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Analog to digital: Two theorems

Nyquist-Shannon sampling theorem

B8.4 Information Theory 
Information Theory, Inference, and Learning Algorithms by David J.C. MacKay 
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Analog to digital: Two theorems
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Nyquist-Shannon sampling theorem

Shannon source coding theorem
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High-resolution signals: bandwidth limitation
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Full HD movie: 
1920 × 1080 × 24 fps × (120 × 60) sec × 3 × 8 = 8.6 Tb
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High-resolution signals: bandwidth limitation

4K movie: 
3840 × 2160 × 24 fps × (120 × 60) sec × 3 × 8 = 34.4 Tb
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High-resolution signals: compression

= + + +
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High-resolution signals: compression
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Figure 2.2: Discrete frequency windows at three consecutive scales s = 3, 4, 5 and
at two di↵erent shearings w = 1, 3, 1. Curvelets are shifted in the image domain to
be ordered from the largest scale on the bottom to the finest scale at the top of the
image.

A correspond to individual curvelet elements. It also satisfies the Parseval’s identity:

X

j,k,l

|cu,k,l|
2 =

N1,N2X

x1,x2=1

f(x1, x2). (2.16)

Moreover, it provides near-optimal sparse representation for natural images. This

means that the error of the incomplete representation fm consisting of the m largest

curvelet coe�cients converges almost with O(m�2), which is the fundamental infor-

mation limit for images [11]:

kf � fmk
2
2 ⇡ O

�
(logm)3m�2

�
. (2.17)

The curvelet transform can be extended to higher dimensions. Figure 2.3 illus-

trates how frequency tiling would look for the frequency domain of 3D space. How-

ever, one of the disadvantages of curvelets is their high over-redundancy, meaning

that we produce many more coe�cients than was the original size of the image. This

e↵ect is even more the case for 3D curvelets. While, in many image processing ap-

plications this is not an issue, in our case it increases the computational cost and

memory requirements of the reconstruction algorithm. To reduce redundancy of the

3D curvelets we use high-frequency Meyer wavelets to capture the highest frequencies.

This significantly reduces the memory and computational costs, as we save ourselves

from computing the curvelet coe�cients in the finest angular window.

How do the 2D and 3D curvelets compare in representing a multispectral image?

Since they satisfy the Parseval’s identity (2.16), the coe�cient decay rate is indicative
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Figure 2.2: Discrete frequency windows at three consecutive scales s = 3, 4, 5 and
at two di↵erent shearings w = 1, 3, 1. Curvelets are shifted in the image domain to
be ordered from the largest scale on the bottom to the finest scale at the top of the
image.

A correspond to individual curvelet elements. It also satisfies the Parseval’s identity:
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f(x1, x2). (2.16)

Moreover, it provides near-optimal sparse representation for natural images. This

means that the error of the incomplete representation fm consisting of the m largest

curvelet coe�cients converges almost with O(m�2), which is the fundamental infor-

mation limit for images [11]:
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The curvelet transform can be extended to higher dimensions. Figure 2.3 illus-

trates how frequency tiling would look for the frequency domain of 3D space. How-

ever, one of the disadvantages of curvelets is their high over-redundancy, meaning

that we produce many more coe�cients than was the original size of the image. This

e↵ect is even more the case for 3D curvelets. While, in many image processing ap-

plications this is not an issue, in our case it increases the computational cost and

memory requirements of the reconstruction algorithm. To reduce redundancy of the

3D curvelets we use high-frequency Meyer wavelets to capture the highest frequencies.

This significantly reduces the memory and computational costs, as we save ourselves

from computing the curvelet coe�cients in the finest angular window.

How do the 2D and 3D curvelets compare in representing a multispectral image?

Since they satisfy the Parseval’s identity (2.16), the coe�cient decay rate is indicative
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1/10 compression

Groundtruth

Groundtruth

Figure 2.2: Discrete frequency windows at three consecutive scales s = 3, 4, 5 and
at two di↵erent shearings w = 1, 3, 1. Curvelets are shifted in the image domain to
be ordered from the largest scale on the bottom to the finest scale at the top of the
image.

A correspond to individual curvelet elements. It also satisfies the Parseval’s identity:
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f(x1, x2). (2.16)

Moreover, it provides near-optimal sparse representation for natural images. This

means that the error of the incomplete representation fm consisting of the m largest

curvelet coe�cients converges almost with O(m�2), which is the fundamental infor-

mation limit for images [11]:
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The curvelet transform can be extended to higher dimensions. Figure 2.3 illus-

trates how frequency tiling would look for the frequency domain of 3D space. How-

ever, one of the disadvantages of curvelets is their high over-redundancy, meaning

that we produce many more coe�cients than was the original size of the image. This

e↵ect is even more the case for 3D curvelets. While, in many image processing ap-

plications this is not an issue, in our case it increases the computational cost and

memory requirements of the reconstruction algorithm. To reduce redundancy of the

3D curvelets we use high-frequency Meyer wavelets to capture the highest frequencies.

This significantly reduces the memory and computational costs, as we save ourselves

from computing the curvelet coe�cients in the finest angular window.

How do the 2D and 3D curvelets compare in representing a multispectral image?

Since they satisfy the Parseval’s identity (2.16), the coe�cient decay rate is indicative
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High-resolution signals: compression
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High-resolution signals: compression
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More computation  Less transfer≈
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Compressed sensing
Why sample in such a detail when we compress away most of the information?
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Compressed sensing
Why sample in such a detail when we compress away most of the information?
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Compressed sensing
Why sample in such a detail when we compress away most of the information?

1/2 of pixels 1/20 compressionGroundtruth
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Compressed sensing

1/25 of pixels 1/200 compressionGroundtruth



Compressed sensing
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More computation  More precise measurement≈ 7
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Incomplete information in recommendation systems
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Topic of my DPhil: Combining the two structures

(a) -rpca

(b) -niht

(c) (rpca

(d) (niht

Figure 4.5: NIHT recovery re-
sults of a 190 ⇥ 140 ⇥ 150 video
sequence compared to the ap-
proximation of the complete
video sequence by Robust PCA
(AccAltProj (Cai et al.Cai et al., 20192019)).
The video sequence is reshaped
into a 26 600⇥150 matrix and ei-
ther recovered from FJLT mea-
surements with ⇣ = 0.33 us-
ing rank A = 1 and sparsity
B = 197 505 or approximated
from the full video sequence
by computing RPCA by Ac-
cAltProj with the same rank
and sparsity parameters. Re-
covery by NIHT from sub-
sampled information achieves
PSNR of 34.5 dB whereas the
Robust PCA approximation
from the full video sequence
achieves PSNR of 35.5 dB.

4.6.1 Dynamic-foreground/static-background video separation

Background/foreground separation is the task of distinguishing moving
objects from the static-background in a time series, e.g. a video recording.
A widely used approach is to arrange frames of the video sequence into
an < ⇥ = matrix, where < is the number of pixels and = is the number of
frames of the recording and apply Robust PCA to decompose the matrix
into the sum of a low-rank and a sparse component which model the static
background and dynamic foreground respectively (Bouwmans et al.Bouwmans et al., 20172017).
Herein we consider the same problem but with the additional challenge of
recovering the video sequence from subsampled information (Waters et al.Waters et al.,
20112011) analogous to compressed sensing.

We apply NIHT, Algorithm 11, to the well studied shopping mall surveil-
lance introduced by Li et al.Li et al. (20042004) which is a 190⇥ 140⇥ 150 video sequence.
The video sequence is rearranged into a matrix of size 26 600 ⇥ 150 and mea-
sured using subsampled FJLT (4.1064.106) with one third as many measurements
as the ambient dimension, ⇣ = 0.33. The static-background is modeled with
a rank-A matrix with A = 1 and the dynamic-foreground by an B-sparse matrix
with B = 197 505 (⌧A = 0.02, ⌧B = 0.15). Figure 4.54.5 displays the reconstructed
image -=8⌘C and its sparse component (=8⌘C alongside the results obtained
from applying Robust PCA (AccAltProj by Cai et al.Cai et al. (20192019)) which makes use
of the fully sampled video sequence rather than the one-third measurements
available to NIHT. NIHT accurately estimates the video sequence achieving
PSNR of 34.5 dB while also separating the low-rank background from the
sparse foreground. The results are of a similar visual quality to the case of
Robust PCA that achieves PSNR of 35.5 dB which requires access to the full
video sequence.
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Dynamic-foreground/static-background seperation from  information.1/3
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Thank you for your attention. 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