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Low-rank plus sparse model

Principal Component Analysis (PCA)

Correlation matrix M = 1
NYY

T of a

mean-centered samples yi ,

min
X∈Rm×n

‖X −M‖F , s.t. rank (X ) ≤ r .

or from subsamped data b = A(M) ∈ Rp

min
X∈Rm×n

‖A(X )−b‖F , s.t. rank (X ) ≤ r ,

Robust PCA

For a given matrix M, find X

min
X∈Rm×n

‖X−M‖F , s.t. X ∈ LSm,n(r , s).

where

LSm,n(r , s) =

{
L + S ∈ Rm×n

rank(L) ≤ r , ‖S‖0 ≤ s

}
.
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Compressed sensing of low-rank plus sparse matrices

Let b = A(L0 + S0) ∈ Rp, where

◦ rank(L0) ≤ r and ‖S0‖0 ≤ s,

◦ A : Rm×n → Rp is a linear subsampling.

Recover L0 and S0 only from b = A(M) and A(·)?

signal

information
measurements

outliers
corruptions

limited information

full information

Matrix completion/sensing 
min

rank(X)≤r
∥A(X) − b∥F

Low-rank plus sparse sensing 

min
rank(L)≤r, ∥S∥0≤s

∥A(L + S) − b∥F

no outliers outliers noise

PCA 
min

rank(X)≤r
∥X − M∥F

Robust PCA 
min

rank(L)≤r, ∥S∥0≤s
∥L + S − M∥F
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Subsampled dynamic-foreground/static-background seperation

(a) -rpca

(b) -niht

(c) (rpca

(d) (niht

Figure 4.5: NIHT recovery re-
sults of a 190⇥ 140⇥ 150 video
sequence compared to the ap-
proximation of the complete
video sequence by Robust PCA
(AccAltProj (Cai et al.Cai et al., 20192019)).
The video sequence is re-
shaped into a 26 600 ⇥ 150 ma-
trix and either recovered from
FJLT measurements with ⇣ =
0.33 using rank A = 1 and spar-
sity B = 197 505 or approxi-
mated from the full video se-
quence by computing RPCA
by AccAltProj with the same
rank and sparsity parameters.
Recovery by NIHT from sub-
sampled information achieves
PSNR of 34.5 dB whereas the
Robust PCA approximation
from the full video sequence
achieves PSNR of 35.5 dB.

4.6.1 Dynamic-foreground/static-background video separation

Background/foreground separation is the task of distinguishing moving
objects from the static-background in a time series, e.g. a video recording.
A widely used approach is to arrange frames of the video sequence into
an < ⇥ = matrix, where < is the number of pixels and = is the number of
frames of the recording and apply Robust PCA to decompose the matrix
into the sum of a low-rank and a sparse component which model the static
background and dynamic foreground respectively (Bouwmans et al.Bouwmans et al., 20172017).
Herein we consider the same problem but with the additional challenge of
recovering the video sequence from subsampled information (Waters et al.Waters et al.,
20112011) analogous to compressed sensing.

We apply NIHT, Algorithm 11, to the well studied shopping mall surveil-
lance introduced by Li et al.Li et al. (20042004) which is a 190⇥140⇥150 video sequence.
The video sequence is rearranged into a matrix of size 26 600⇥ 150 and mea-
sured using subsampled FJLT (4.1124.112) with one third as many measurements
as the ambient dimension, ⇣ = 0.33. The static-background is modeled with a
rank-A matrix with A = 1 and the dynamic-foreground by an B-sparse matrix
with B = 197 505 (⌧A = 0.02, ⌧B = 0.15). Figure 4.54.5 displays the reconstructed
image -=8⌘C and its sparse component (=8⌘C alongside the results obtained
from applying Robust PCA (AccAltProj by Cai et al.Cai et al. (20192019)) which makes
use of the fully sampled video sequence rather than the one-third measure-
ments available to NIHT. NIHT accurately estimates the video sequence
achieving PSNR of 34.5 dB while also separating the low-rank background
from the sparse foreground. The results are of a similar visual quality to the
case of Robust PCA that achieves PSNR of 35.5 dB which requires access to
the full video sequence.

§4.6 · ������������ 82

Review: Illustration of Robust PCA application

Low-rank plus sparse for foreground/background separation

Decomposition into low-rank + sparse components

Note

This assumption holds a particular association to the problem of
background/foreground separation.

A L

= +

S

The process of background/foreground separation can be regarded as a
matrix separation problem.

Andrews Cordolino Sobral (L3I/MIA) Université de La Rochelle 16

Figure: Depiction of low-rank plus sparse matrix model for background

separation (Sobral 2016).

- Robust PCA widely considered for this problem (Bowmans et. al. 2016)

- Library of 50 Robust PCA algorithms for background separation
https://github.com/andrewssobral/lrslibrary
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=
+

time / frames

X

L

S

pixels

Figure 1: Recovery of a 190× 140× 150 video sequence. The video is shaped into 26600× 150 and

recovered using FJLT from δ = 1/3 using r = 1 and s = 197505.
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Assumptions for Robust PCA recovery

Incoherence of L (Candès & Recht, 2009):

For the truncated SVD of L = UΣV T we have

∃µ ≥ 1 :

max
i∈{1,...,r}

∥∥∥UT ei

∥∥∥
2
≤
√
µr

m
,

max
i∈{1,...,r}

∥∥∥V T ei
∥∥∥

2
≤
√
µr

n
.

ei

ej

span(U)

∥UTej∥
∥UTei∥

Sparsity pattern of S

(Chandrasekaran et al., 2011):

For the sparse component S ∈ Rm×n

∃α ∈ [0, 1) :
‖ST ei‖0 ≤ αn
‖Sej‖0 ≤ αm

<latexit sha1_base64="gRkLF/8GQhmCxuxt1NbQbx39AfI=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Mv65Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80un5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazt8mAK2RGTCyhTHF7K2EjqigzNpySDcFbfnmVtC6qXq3q3V9W6jd5HEU4gVM4Bw+uoA530IAmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A518jWs=</latexit>{

<latexit sha1_base64="gRkLF/8GQhmCxuxt1NbQbx39AfI=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Mv65Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80un5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazt8mAK2RGTCyhTHF7K2EjqigzNpySDcFbfnmVtC6qXq3q3V9W6jd5HEU4gVM4Bw+uoA530IAmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A518jWs=</latexit>

{
αm

αn

S
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Existing recovery guarantees for Robust PCA

Convex relaxation

The solution to the convex problem

arg min
L,S∈Rm×n

‖L‖∗ + λ‖S‖1, s.t. L + S = M, (1)

identifies (L,S) from M when s < O
(
mn/

(
µ2r2

))
(Hsu et al., 2011).

Non-convex algorithms

Provable gradient descent methods for the non-convex problem(??) when

arg min
L+S∈Rm×n

‖(L + S)−M‖F , s.t. L + S ∈ LSm,n(r , s), (2)

identifies (L,S) from M when s < O
(
mn/

(
µ2r3

))
(Yi et al., 2016; Wei et al., 2019).

. . . and the support set of S is well spread with α ≤
√

s/mn.
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A simple example of non-closedness

Consider the best LS3,3(1, 1) approximation to M

min
X∈R3×3

‖X −M‖F , s.t. X ∈ LS3,3(1, 1),

with M =

0 1 1

1 0 0

1 0 0

 ←
0 1 1

1 ε ε

1 ε ε


︸ ︷︷ ︸
Xε∈LS3,3(1,1)

=

1/ε 1 1

1 ε ε

1 ε ε


︸ ︷︷ ︸

Lε

+

−1/ε 0 0

0 0 0

0 0 0


︸ ︷︷ ︸

Sε

.

- As ε→ 0, the error ‖Xε −M‖F = 2ε→ 0.

- However, Xε converges to M which is outside of

the feasible set LS3,3(1, 1).

- As ε→ 0 ‖Lε‖F and ‖Sε‖F become unbounded.
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Matrix rigidity in complexity theory

Matrix rigidity (Valiant 1977)

The smallest number of entries of M that need to be changed such that the rank becomes at

most r :

Rig(M, r) = min {‖S‖0 : rank(M − S) ≤ r} = min {s : M ∈ LSm,n(r , s)} ,
≤ (m − r)(n − r).

It can happen that Mε ∈ LSm,n(r , s)→ M and Rig(M, r ′) > s where r ′ ≥ r .

Related to complexity of linear transforms

◦ Lower bound of the form Rig(A, εn) ≥ n1+δ, for some constants ε, δ > 0, implies that

multiplication by A ∈ Rn×n cannot be computed in O(n log n).

Non-closedness ⇐⇒ Rig(·, r) is not semicontinuous (Kumar & Lokam 2014)

◦ Small perturbation Aε of A (∀ε > 0 : ‖A−Aε‖F < ε) may decrease Rig(A, r) > Rig(Aε, r).
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Non-closedness generalization

Theorem (LSn,n(r , s) is not closed for a range of r , s ∈ N)1

The set of low-rank plus sparse matrices LSn,n(r , s) is not closed for r ≥ 1, s ≥ 1 provided

(r + 1)(s + 2) ≤ n, or provided (r + 2)3/2s1/2 ≤ n where s is of the form s = p2r for an

integer p ≥ 1.

As a consequence, there are matrices M ∈ Rn×n for which Robust PCA and low-rank matrix

completion are ill-posed in the sense that they have no global minimum.

THIS W
ORK

CONJECTURE 11
4

2

1
2 1

LS (O(n), O(n2))

ℓ
r = O (nℓ)

t

s = O (nt)

maximally rigid

1Tanner, Thompson, V. (2019). Matrix rigidity and the ill-posedness of Robust PCA and matrix completion
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Bounded coherence closes the LS set

Lemma (Tanner & V., 2020):

Let s < mn/(µ2r2) and X = L + S ∈ LSm,n(r , s, µ). Then the following holds

(i) |〈L,S〉| ≤ µ r
√
s√

mn
‖L‖F ‖S‖F ,

(ii) ‖L‖F ≤
(

1− µ2 r2s
mn

)−1/2

‖X‖F and ‖S‖F ≤
(

1− µ2 r2s
mn

)−1/2

‖X‖F ,

(iii) LSm,n(r , s, µ) is a closed set.

∥L∥F

∥S∥F

∥X∥F

∥X∥F

∥L∥F

∥S∥F

∥X∥F

∥X∥F

μ ≈ 1 μ ≫ 1

∥X∥2
F = ∥L∥2

F + ∥S∥2
F

∥X∥F = ∥L∥F + ∥S∥F
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Computable solution under conditions on identifiability and recoverability

Under some conditions on

◦ the structure of the matrix matrix M = L0 + S0 (idenitifiability) and

◦ the linear subsampling A : Rm×n → Rp (recoverability),

we can retrieve L0 and S0 from the subsampled measurement vector b = A(M), either by

solving the convex optimization problem

(L∗,S∗) = arg min
L,S∈Rm×n

‖L‖∗ + λ‖S‖1, s.t. ‖A(L + S)− b‖2 ≤ εb, (?)

or by solving the following non-convex optimization problem

min
X∈Rm×n

‖A(X )− b‖F , s.t. X ∈ LSm,n(r , s, µ), (??)

where

LSm,n(r , s, µ) =

L + S ∈ Rm×n :

rank(L) ≤ r , ‖S‖0 ≤ s

maxi∈{1,...,m} ‖UT ei‖2 ≤
√

µr
m

maxi∈{1,...,n} ‖V T fi‖2 ≤
√

µr
n

 .
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Recoverability via the restricted isometry property

Definition (Restricted isometry property of A on LSm,n(r , s, µ)):

For a linear subsampling A : Rm×n → Rp, there exists ∆r ,s,µ ∈ (0, 1) such that

(1−∆r ,s,µ) ‖X‖2
F ≤ ‖A(X )‖2

2 ≤ (1 + ∆r ,s,µ) ‖X‖2
F , (3)

for all matrices X ∈ LSm,n(r , s, µ) whose low-rank component has bounded coherence by µ.

ℝm×n ℝp

x1

x2

A(x1)

A(x2)
(1 ± Δ2r,2s,μ)

LSm,n(r, s, μ)
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Recoverability: For which A(·) can we recover (L, S) from b = A(b)?

Theorem (Bound on the RICs for LSm,n(r , s, µ)):

For given m, n, p ∈ N, ∆ ∈ (0, 1), s < mn/(µ2r2), and a Gaussian

subsampling A : Rm×n → Rp there exist constants c0, c1 > 0 such that ∆r ,s,µ ≤ ∆ when

p > c0(∆) (r(m + n − r) + s) log
((

1− γ2
)−1/2 mn

s

)
, (4)

with probability at least 1− exp (−c1p), where γ := µ r
√
s√

mn
.

b ∈ ℝp

vec(X) ∈ ℝmn

A ∈ ℝp×mn

X(:,1)

X(:,2)

X(:,n)

∼ N(0,1/p)
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Recovery by the convex relaxation

Recall the convex optimization problem

(L∗,S∗) = arg min
L,S∈Rm×n

‖L‖∗ + λ‖S‖1, s.t. ‖A(L + S)− b‖2 ≤ εb. (?)

Theorem (Guaranteed convex recovery):

Let b = A(M) and suppose that r , s ≥ 1 and s < mn/(32µ2r2) are such that the restricted

isometry constant ∆4r ,2s,2µ(A) ≤ 1
7 − 2γ where γ := µ 4r

√
2s√

mn
. Let X ∗ = L∗ + S∗ be the

solution of (?) with λ =
√

2r/s, then ‖X ∗ −M‖F ≤ 42εb.
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Non-convex algorithm: Normalized Alternating Hard Thresholding

Recall the non-convex optimization:

min
X∈LSm,n(r ,s,µ)

‖A(X )− b‖F . (??)

Algorithm 1 NAHT

1: while not converged do

2: Compute the residual R j
L = A∗

(
A(X j)− b

)
3: Set V j = Lj − αL

j R
j
L

4: Set Lj+1 = HT(V j ; r)

5: Set X j+ 1
2 = Lj+1 + S j

6: Compute the residual R j
S = A∗

(
A(X j+ 1

2 )− b
)

7: Set W j = S j − αS
j R

j
S

8: Set S j+1 = HT(W j ; s)

9: Set X j+1 = Lj+1 + S j+1

10: j = j + 1

11: end while
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Non-convex algorithm: Normalized Alternating Hard Thresholding

Theorem (Guaranteed recovery by NAHT):
Suppose that r , s ∈ N and s < mn

/ (
8µ2r2

)
are such that the restricted isometry constant

∆3 := ∆3r ,3s,µ(A) < 1
9 − γ2 where γ2 := µ 2r

√
2s√

mn
. Then

∥∥Lj+1 − L0

∥∥
F

+
∥∥S j+1 − S0

∥∥
F
≤ 6∆3 + 9

8γ2

1− 3∆3 − 9
8γ2

(∥∥Lj − L0

∥∥
F

+
∥∥S j − S0

∥∥
F

)
. (5)
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Linear convergence of non-convex recovery
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Figure 4.2: Relative error in
the approximate -✓ as a func-
tion of time for synthetic prob-
lems with < = = = 100 and
? = (1/2)1002, ⇣ = 1/2, for
Gaussian linear measurements
A. In (b), SpaRCS converged in
171 sec. (45 iterations), and in
(c), SpaRCS did not converge.
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(a) ⇣ = 0.5, ⌧A = 0.05, ⌧B = 0.15
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Figure 4.3: Error between the
approximate recovered low-
rank and sparse components
!✓ and (✓ and the true low-
rank and sparse components
!0 and (0. Error is plotted as
a function of recovery time for
synthetic problems with < =
= = 100 and ? = (1/2)1002,
⇣ = 1/2, for Gaussian linear
measurementsA.

solving Robust PCA in every iteration for the projection step whereas NAHT
performs computationally cheaper singular value decomposition (SVD) and
sparse hard thresholding projection.

Figure 4.34.3 illustrates the convergence of the individual low-rank and
sparse components k!✓ � !0k� and k(✓ � (0k� as a function of time. The
algorithms are observed to approximate the low-rank factor more accurately
than the sparse component and that the computational time increases for
larger values of sparsity fraction ⌧B . Moreover, for both NIHT and NAHT
the relative error of both components decreases together.

Figure 4.44.4 depicts the phase transitions of ⇣ above which NIHT, NAHT
and solving the convex relaxation problem in (4.34.3) successfully recovers -0
in more than half of the experiments. Comparing Figure 4.44.4 to Figure 4.14.1
we see that the phase transitions roughly occur for the same parameters
⌧A , ⌧B with only small differences due to the finite-dimensional effects of

§4.5 · ��������� ������� ���� ����������� 80

Figure 2: Relative error in the approximate ‖X `‖F for m = n = 100 and p = (1/2)1002, δ = 1/2 and

Gaussian A, and µ ≈ 3. In (b), SpaRCS (Waters et al., 2011) converged in 171 sec. (45 iterations).
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Conclusions

1. Non-convex optimisation problems can have no solutions1.

2. For LSm,n(r , s, µ) to have s < mn/(µ2r2) closes the set.

3. We do not need structure for the supp(S) in Robust PCA and similar problems.

4. Restricted isometry constants, guaranteed convex and non-convex solution of the subsam-

pled low-rank plus sparse problem2.

1Tanner, Thompson, V. (2019). Matrix rigidity and the ill-posedness of Robust PCA and matrix completion
2Tanner & V. (2020). Compressed sensing of low-rank plus sparse matrices
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Thank you for your attention.
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Numerical phase transition: Convex relaxation and NAHT

Phase transition δ∗ above which recovery is possible, where

subsampling: δ =
p

mn
, rank: ρr =

r(m + n − r)

p
, sparsity: ρs = s/p
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(a) Convex recovery for 30 × 30 matrix,

µ ≈ 3.
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(b) NAHT recovery for 100 × 100 matrix,
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Problems with convex Robust PCA and non-closedness

min
L∈Rm×n

‖L‖∗ + λ‖S‖1, s.t. M = L + S ,

where ‖ · ‖∗ is the nuclear norm (sum of the singular values of L) and ‖ · ‖1 denotes the

`1-norm (sum of the absolute values of the entries of S).
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Divergence of non-convex low-rank matrix completion

We are given only entries of M at indices Ω in the form of b = PΩ(M). Solving

min
X∈Rm×n

‖PΩ(X )− b‖F , s.t. rank (X ) ≤ r

recovers M for many r and an entry-wise subsampling operator PΩ : Rm×n → Rp.
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