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Low-rank plus sparse model

Principal Component Analysis (PCA)
Correlation matrix M = LYY T of a

mean-centered samples y;,

min [|[X — M||r, s.t.rank(X) <r.

XEeRmxn

or from subsamped data b = A(M) € RP

min || A(X)=b|r, s.t. rank(X)<r,
XERmxn

Robust PCA

For a given matrix M, find X

min || X—=M|g, st. X &LSpn(r,s).

XeRan

where

LSy n(r,s) = {

L+ S eRmMxn
rank(L) < r, S|, < s

s

} |
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Compressed sensing of low-rank plus sparse matrices

Let b= A(Ly + So) € RP, where

o rank(Log) < r and ||Sollo < s,
o A:R™*" — RPis a linear subsampling.
Recover Ly and Sy only from b = A(M) and A(-)?
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min [JAX) = b|lp
rank(X)<r
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min [|IL+S—M|p

rank(L)<r, ||S||o<s
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Subsampled dynamic-foreground/static-background seperation
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Figure 1: Recovery of a 190 x 140 x 150 video sequence. The video is shaped into 26600 x 150 and
recovered using FJLT from 6 = 1/3 using r =1 and s = 197505.
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Assumptions for Robust PCA recovery

Incoherence of L (Candeés & Recht, 2009):

For the truncated SVD of L = UZ VT we have
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Sparsity pattern of S
(Chandrasekaran et al., 2011):

For the sparse component S € R™*"

IS eillo < an

Ja €[0,1):
15€jllo < am
an
—
am
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Existing recovery guarantees for Robust PCA

Convex relaxation

The solution to the convex problem

argmin ||L||« + A||S]|1, st. L+S5S=M, (1)
L,SeRmxn

identifies (L, S) from M when s < O (mn/ (41?r?)) (Hsu et al., 2011).
Non-convex algorithms

Provable gradient descent methods for the non-convex problem(**) when

argmin ||(L+S)—M|lr, st. L+SeLSnyn(r,s), (2)
L+SeRmxn

identifies (L, S) from M when s < O (mn/ (1?r?)) (Yi et al., 2016; Wei et al., 2019).

...and the support set of S is well spread with o < \/s/mn.
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A simple example of non-closedness

Consider the best LS3 3(1,1) approximation to M

min ||X - MHF, st. Xé€ LS373(1, 1),

XeR3><3
0 1 1 0 1 1 1/e 1 1 —-1/e 0 O
with M=11 0 0| «< |1 € e|=|1 € e|+ 0 0 0
1 00 1 ¢ ¢ 1 ¢ ¢ 0 0 0
XEELS373(1,1) L. Se

- As e — 0, the error || X; — M||g = 2¢ — 0.

- However, X. converges to M which is outside of
the feasible set LS33(1,1).

- Ase — 0 ||Lc||F and ||Sc||F become unbounded.

Objective || X — M|

Feasible set LSy(1,1) 6 /18



Matrix rigidity in complexity theory

Matrix rigidity (Valiant 1977)

The smallest number of entries of M that need to be changed such that the rank becomes at
most r:

Rig(M, r) = min {||S|jo : rank(M — S) < r} =min{s: M € LS, n(r,s)},
<(m-=r)(n-r).
It can happen that M, € LS, »(r,s) = M and Rig(M,r') > s where r' > r.
Related to complexity of linear transforms
o Lower bound of the form Rig(A,en) > n'*t9, for some constants €, > 0, implies that
multiplication by A € R"™" cannot be computed in O(n log n).

Non-closedness <= Rig(-, r) is not semicontinuous (Kumar & Lokam 2014)

o Small perturbation Ac of A (Ve > 0: [|[A—Ac||r < €) may decrease Rig(A, r) > Rig(Ae,r).
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Non-closedness generalization

Theorem (LS, a(r,s) is not closed for a range of r,s € N)!

The set of low-rank plus sparse matrices LS, »(r,s) is not closed for r > 1, s > 1 provided
(r +1)(s +2) < n, or provided (r +2)3/?s'/2 < n where s is of the form s = p?r for an

integer p > 1.

As a consequence, there are matrices M € R"*" for which Robust PCA and low-rank matrix

completion are ill-posed in the sense that they have no global minimum.

t
2

s=0(n")

N

maximally rigid
b LS (O(n), O(nz))

ITanner, Thompson, V. (2019). Matrix rigidity and the ill-posedness of Robust PCA and matrix completion
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Bounded coherence closes the LS set

Lemma (Tanner & V., 2020):
Let s < mn/(u?r?) and X = L+ S € LSy, 4(r, s, 11). Then the following holds
() HL S < D IL| ||5||F’

M r's - I’ZS 71/2
@) e < (1-222) CIXl and sl < (1 222) X
(iii)  LSm,n(r,s,p) is a closed set.

1117 = LI+ ISI17
IXle [1X11
HS”I . : k

1Ll X1l 1Ll - 11Xl

u=l p>1 9/18



Computable solution under conditions on identifiability and recoverability

Under some conditions on

o the structure of the matrix matrix M = Ly + Sy (idenitifiability) and
o the linear subsampling A : R™*" — RP (recoverability),

we can retrieve Ly and Sy from the subsampled measurement vector b = A(M), either by
solving the convex optimization problem

(L*,5*) = argmin ||L||« + A||S]|1, st. AL+ S) — b|l2 < ep, (%)
L,SGRWX"
or by solving the following non-convex optimization problem
min || A(X) — b|lr, st. X € LSpma(r,s,p), ()
XeRan

where
rank(L) < r, [|S|lp < s
LSmalris,a) = § L+ S €R™T: maxicq,.m U7 el < /7

maxieq1,..np IV fila < /B
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Recoverability via the restricted isometry property

Definition (Restricted isometry property of A on LS, ,(r,s, p1)):

For a linear subsampling A : R™*" — RP, there exists A, s, € (0,1) such that
(1= Ars ) IXIE < A < (1 + Ars ) X, (3)

for all matrices X € LSy, »(r, s, i) whose low-rank component has bounded coherence by .

LS/H,/'I(r7 S’ /’t)

-~
-
-------

R mxXn
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Recoverability: For which A(-) can we recover (L,S) from b = A(b)?

Theorem (Bound on the RICs for LS, ,(r,s, i)):

For given m,n,p € N, A € (0,1), s < mn/(1°r?), and a Gaussian
subsampling A : R™*" — RP there exist constants cp, c; > 0 such that A, , < A when

p> co(d) (r(m+n—r)+s)log (1 =77 * %), (4)
with probability at least 1 — exp (—cy1p), where v := M\’/%.
~ N(0,1/
/ ( P) :]
—JX(:,I)
D —
Er o
. u
pXmn Dl b c RP
AeR ZjX< )
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Recovery by the convex relaxation

Recall the convex optimization problem

(L*,8*) = argmin ||L]|« + A||S]|1, st. AL+ S)— b|2 < ep. (%)
L,SeRan

Theorem (Guaranteed convex recovery):

Let b = A(M) and suppose that r,s > 1 and s < mn/(32u%r?) are such that the restricted

isometry constant Az 2s2,(A) < 2 — 2 where v := 4rv2s | ot X* = [* + S* be the
125,21 K= Jmm -

solution of (x) with A = \/2r/s, then [|X* — M||g < 42¢p.
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Non-convex algorithm: Normalized Alternating Hard Thresholding

Algorithm 1 NAHT
1: while not converged do
2 Compute the residual R] = A" (A(X/) — b)
3: Set V/ =1J — ajL R]
4. Set U =HT(V/; r)
5
6

Recall the non-convex optimization:

e I A(X) = bllr. ()

Set Xit: = [J*1 4+ &
Compute the residual R. = A* (A(XH%) — b)
7: Set W/ =5/ — af RJS'
8: Set S/t = HT(W/; s)
: Set XJ*1 = [j+1 4 G+l
10: Jj=Jj+1
11: end while
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Non-convex algorithm: Normalized Alternating Hard Thresholding

Theorem (Guaranteed recovery by NAHT):
Suppose that r,s € N and s < mn/ (8u?r?) are such that the restricted isometry constant

As = A3r’3$7M(A) — 2 where v, 1= u2f Then
) ) 6A3 + 27y
|4~ to]| + |57+ - o||Fé1;A—“ (16 - Lol + 9 - S5ll,) - ®)
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Linear convergence of non-convex recovery

10° ‘ ; ‘ 10°;
——NIHT (AccAltProj)
R ——NIHT (GoDec) S o—o—6—6—6—0o
=10 NAHT =10
> ——SpaRCS >
= = ——NIHT (AccAltProj)
=102 o 102 +Ng‘IT (GoDec)
D) Seeesos D NAHT
:T‘l :T: —e—SpaRCS
< 10 < 10°
< =
1074 1074
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (sec.) Time (sec.)
(@) pr = ps =0.05 (b) pr =ps =0.1

Figure 2: Relative error in the approximate || X‘||¢ for m = n = 100 and p = (1/2)100%, § = 1/2 and

Gaussian A, and p = 3. In (b), SpaRCS (Waters et al., 2011) converged in 171 sec. (45 iterations).
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Conclusions

Non-convex optimisation problems can have no solutions?.
For LSy a(r, s, it) to have s < mn/(u?r?) closes the set.
We do not need structure for the supp(S) in Robust PCA and similar problems.

el AN

Restricted isometry constants, guaranteed convex and non-convex solution of the subsam-
pled low-rank plus sparse problem?.

ITanner, Thompson, V. (2019). Matrix rigidity and the ill-posedness of Robust PCA and matrix completion

2Tanner & V. (2020). Compressed sensing of low-rank plus sparse matrices
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Thank you for your attention.
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Numerical phase transition: Convex relaxation and NAHT

Phase transition §* above which recovery is possible, where

subsampling: § = %, rank: p, = M, sparsity: ps =s/p
p

g
e

01 02 03 04 05 06 07 08 09 1

Pr

P4

(a) Convex recovery for 30 x 30 matrix, (b) NAHT recovery for 100 x 100 matrix,

A 3. A 3. 19 /18
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Problems with convex Robust PCA and non-closedness

where || - ||« is the nuclear norm (sum of the singular values of L) and || - |1 denotes the

min 1Ll + AIS]h,

st. M=L+S,

¢1-norm (sum of the absolute values of the entries of S).
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Divergence of non-convex low-rank matrix completion

We are given only entries of M at indices Q in the form of b = Pq(M). Solving

min ||Po(X) — b|lr, s.t. rank(X)<r
XERmxn

recovers M for many r and an entry-wise subsampling operator Pq : R™*" — RP,
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