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Compressed sensing of low-rank plus sparse matrices

Consider the following problem:

◦ M = L0 + S0 ∈ Rm×n such that rank(L0) ≤ r and ‖S0‖0 ≤ s,

◦ b = A(M) ∈ Rp be a vector of p < mn linear measurements from A : Rm×n → Rp.

The question is:

Can we recover L0 and S0 only from the subsampled information b = A(M) and A(·)?
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Subsampled dynamic-foreground/static-background seperation
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Figure 4.5: NIHT recovery re-
sults of a 190⇥ 140⇥ 150 video
sequence compared to the ap-
proximation of the complete
video sequence by Robust PCA
(AccAltProj (Cai et al.Cai et al., 20192019)).
The video sequence is re-
shaped into a 26 600 ⇥ 150 ma-
trix and either recovered from
FJLT measurements with ⇣ =
0.33 using rank A = 1 and spar-
sity B = 197 505 or approxi-
mated from the full video se-
quence by computing RPCA
by AccAltProj with the same
rank and sparsity parameters.
Recovery by NIHT from sub-
sampled information achieves
PSNR of 34.5 dB whereas the
Robust PCA approximation
from the full video sequence
achieves PSNR of 35.5 dB.

4.6.1 Dynamic-foreground/static-background video separation

Background/foreground separation is the task of distinguishing moving
objects from the static-background in a time series, e.g. a video recording.
A widely used approach is to arrange frames of the video sequence into
an < ⇥ = matrix, where < is the number of pixels and = is the number of
frames of the recording and apply Robust PCA to decompose the matrix
into the sum of a low-rank and a sparse component which model the static
background and dynamic foreground respectively (Bouwmans et al.Bouwmans et al., 20172017).
Herein we consider the same problem but with the additional challenge of
recovering the video sequence from subsampled information (Waters et al.Waters et al.,
20112011) analogous to compressed sensing.

We apply NIHT, Algorithm 11, to the well studied shopping mall surveil-
lance introduced by Li et al.Li et al. (20042004) which is a 190⇥140⇥150 video sequence.
The video sequence is rearranged into a matrix of size 26 600⇥ 150 and mea-
sured using subsampled FJLT (4.1124.112) with one third as many measurements
as the ambient dimension, ⇣ = 0.33. The static-background is modeled with a
rank-A matrix with A = 1 and the dynamic-foreground by an B-sparse matrix
with B = 197 505 (⌧A = 0.02, ⌧B = 0.15). Figure 4.54.5 displays the reconstructed
image -=8⌘C and its sparse component (=8⌘C alongside the results obtained
from applying Robust PCA (AccAltProj by Cai et al.Cai et al. (20192019)) which makes
use of the fully sampled video sequence rather than the one-third measure-
ments available to NIHT. NIHT accurately estimates the video sequence
achieving PSNR of 34.5 dB while also separating the low-rank background
from the sparse foreground. The results are of a similar visual quality to the
case of Robust PCA that achieves PSNR of 35.5 dB which requires access to
the full video sequence.
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Figure 1: Recovery of a 190× 140× 150 video sequence. The video is shaped into 26600× 150 and

recovered using FJLT from δ = 1/3 using r = 1 and s = 197505.
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Computable solution under conditions on identifiability and recoverability

Under some conditions on

◦ the structure of the matrix matrix M = L0 + S0 (idenitifiability) and

◦ the linear subsampling A : Rm×n → Rp (recoverability),

we can retrieve L and S from the subsampled measurement vector b = A(M), either by

solving the convex optimization problem

(L∗,S∗) = arg min
L,S∈Rm×n

‖L‖∗ + λ‖S‖1, s.t. A(L + S) = b, (?)

or by solving the following non-convex optimization problem

min
X∈Rm×n

‖A(X )− b‖F , s.t. X ∈ LSm,n(r , s), (??)

where

LSm,n(r , s) =
{
L + S ∈ Rm×n : rank (L) ≤ r , ‖S‖0 ≤ s

}
. (1)
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Identifiability: Which matrices (L, S) can we hope to identify?

We wish to avoid cases of X0 = L0 + S0 which is simultaneously low-rank and sparse. In

linearized form this requires that the tangent spaces T (L0) and Ω(S0) intersect transversally

T (L0) ∩ Ω(S0) = {0} . (2)

Incoherence of the low-rank component (Candès & Recht, 2009):

Correlation of the singular vectors of the rank-r matrix L = UΣV T ∈ Rm×n and the canonical

basis with the coherence parameter µ ∈
[
1,
√

mn/r
]

max
i∈{1,...,r}

∥∥UT ei
∥∥

2
≤
√
µr

m
, max

i∈{1,...,r}

∥∥V T ei
∥∥

2
≤
√
µr

n
. (3)

Sparsity pattern of the sparse component (Chandrasekaran et al., 2011):

∃α ∈ [0, 1) : ‖ST ei‖0 ≤ αn, ‖Sej‖0 ≤ αm, (4)
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Non-closedness: a simple example

Consider the best LS3,3(1, 1) approximation to M

min
X∈R3×3

‖X −M‖F , s.t. X ∈ LS3,3(1, 1),

with M =

0 1 1

1 0 0

1 0 0

 ←
0 1 1

1 ε ε

1 ε ε


︸ ︷︷ ︸
Xε∈LS3,3(1,1)

=

1/ε 1 1

1 ε ε

1 ε ε


︸ ︷︷ ︸

Lε

+

−1/ε 0 0

0 0 0

0 0 0


︸ ︷︷ ︸

Sε

.

- As ε→ 0, the error ‖Xε −M‖F = 2ε→ 0.

- However, Xε converges to M which is outside of

the feasible set LS3,3(1, 1).

- As ε→ 0 ‖Lε‖F and ‖Sε‖F become unbounded.
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Non-closedness generalization

Theorem (LSn,n(r , s) is not closed for a range of r , s ∈ N)1

The set of low-rank plus sparse matrices LSn(r , s) is not closed for r ≥ 1, s ≥ 1 provided

(r + 1)(s + 2) ≤ n, or provided (r + 2)3/2s1/2 ≤ n where s is of the form s = p2r for an

integer p ≥ 1.

As a consequence, there are matrices M ∈ Rn×n for which Robust PCA and low-rank matrix

completion are ill-posed in the sense that they have no global minimum.

THIS W
ORK

CONJECTURE 11
4

2

1
2 1

LS (O(n), O(n2))

ℓ
r = O (nℓ)

t

s = O (nt)

maximally rigid

1Tanner, Thompson & Vary. (2019). Matrix rigidity and the ill-posedness of Robust PCA and matrix
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Closing the set and making the pair (L, S) identifiable

Restrict the incoherence of the low-rank component

LSm,n(r , s, µ) =

L + S ∈ Rm×n :

rank(L) ≤ r , ‖S‖0 ≤ s

maxi∈{1,...,m} ‖UT ei‖2 ≤
√

µr
m

maxi∈{1,...,n} ‖V T fi‖2 ≤
√

µr
n

 .

This also guarantees that ‖L‖F ≤
(
1− γ2

r ,s,µ

)−1/2 ‖X‖F with γr ,s,µ := µ r
√
s√

mn
.

As a consequence the set LSm,n(r , s, µ) is closed when µ <
√
mn/(r

√
s) = 1/(αr).

The fully observed case: Robust PCA

The solution to the convex problem (?) with A = Id identifies (L,S) from M when

µ < O
(√

mn/(r
√
s) = 1/(αr)

)
, (Hsu et al., 2011) (5)

and there exists an algorithm for the non-convex problem (??) when

µ < O
(√

mn/(r1.5
√
s) = 1/(αr1.5))

)
(Yi et al., 2016; Wei et al., 2019). (6)
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Recoverability: For which A(·) can we recover (L, S) from b = A(b)?

Definition (Restricted isometry constants for LSm,n(r , s, µ)):

For every pair of integers (r , s) and every 1 ≤ µ ≤
√
mn/r , define the (r , s, µ)-restricted

isometry constant to be the smallest ∆r ,s,µ > 0 such that

(1−∆r ,s,µ) ‖X‖2
F ≤ ‖A(X )‖2

2 ≤ (1 + ∆r ,s,µ) ‖X‖2
F , (7)

for all matrices X ∈ LSm,n(r , s, µ).

Suppose that ∆2r ,2s,µ(A) < 1 for some integers r , s ≥ 1 and µ ≥ 1

Let X0,X1 ∈ LSm,n(r , s, µ) and b0 = A(X0), b1 = A(X1). Then

(1−∆2r ,2s,µ) ‖X0 − X1‖2
F ≤ ‖A(X0 − X1)‖2

2 ≤ (1 + ∆2r ,2s,µ) ‖X0 − X1‖2
F , (8)

since X0 − X1 ∈ LSm,n(2r , 2s, µ).
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Recoverability: For which A(·) can we recover (L, S) from b = A(b)?

Theorem (Bound on the RICs for LSm,n(r , s, µ))2:

For a given m, n, p ∈ N, ∆ ∈ (0, 1), µ <
√
mn

r
√
s

, and a random Gaussian subsampling transform

A : Rm×n → Rp there exist constants c0, c1 > 0 such that the RIC for LSm,n(r , s, µ) is upper

bounded with ∆r ,s,µ ≤ ∆ provided

p > c0 (r(m + n − r) + s) log
((

1− γ2
)−1/2 mn

s

)
, (9)

with probability at least 1− exp (−c1p), where c0, c1 are constants that depend only on ∆

and γ := µ r
√
s√

mn
≤ µrα.

2Tanner & Vary. (2020). Compressed sensing of low-rank plus sparse matrices
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Recovery by the convex relaxation

Recall the convex optimization problem

(L∗,S∗) = arg min
L,S∈Rm×n

‖L‖∗ + λ‖S‖1, s.t. A(L + S) = b. (?)

Theorem (Guaranteed convex recovery):

Let b = A(X0) and suppose that r , s ∈ N and µ < 1/
(
4
√

3rα
)

are such that the RICs satisfy

∆4r ,3s,µ ≤
1

5
− 12µrα, (10)

and X∗ = L∗ + S∗ be the solution of the convex relaxation with λ =
√
r/s, then X∗ = X0.
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Recovery by non-convex algorithms: Normalized Alternating Hard Thresholding

Recall the non-convex optimization:

min
X∈LSm,n(r ,s,µ)

‖A(X )− b‖F . (??)

Algorithm 1 NAHT

1: while not converged do

2: Compute the residual R j
L = A∗

(
A(X j)− b

)
3: Set V j = Lj − αL

j R
j
L

4: Set Lj+1 = HT(V j ; r)

5: Set X j+ 1
2 = Lj+1 + S j

6: Compute the residual R j
S = A∗

(
A(X j+ 1

2 )− b
)

7: Set W j = S j − αS
j R

j
S

8: Set S j+1 = HT(W j ; s)

9: Set X j+1 = Lj+1 + S j+1

10: j = j + 1

11: end while
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Recovery by non-convex algorithms: Normalized Alternating Hard Thresholding

Incorrect theorem ((Not yet) guaranteed recovery by NAHT):
Suppose that r , s ∈ N and µ <

√
mn
/ (

3r
√

3s
)

are such that the restricted isometry constant

∆3 := ∆3r ,3s,µ <
1

9
− 3µ

r
√
s√

mn
, (11)

then NAHT applied to b = A(X0) as described in NAHT Algorithm will linearly converge to

X0 = L0 + S0 as

∥∥Lj+1 − L0

∥∥
F

+
∥∥S j+1 − S0

∥∥
F
≤

6∆3 + 9
2γ2

1− 3∆3 − 9
2γ2

(∥∥Lj − L0

∥∥
F

+
∥∥S j − S0

∥∥
F

)
, (12)

where γ2 := 2r
√

2s√
mn

.
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Numerical phase transition: Convex relaxation and NAHT

Phase transition δ∗ above which recovery is possible, where

subsampling: δ =
p

mn
, rank: ρr =

r(m + n − r)

p
, sparsity: ρs = s/p
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(a) Convex recovery for 30× 30 matrix, µ ≈ 3.
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(b) NAHT recovery for 100× 100 matrix, µ ≈ 3.
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Linear convergence of non-convex recovery

0 5 10 15 20 25 30

10
-4

10
-3

10
-2

10
-1

10
0

(a) ⌧A = ⌧B = 0.05

0 5 10 15 20 25 30

10
-4

10
-3

10
-2

10
-1

10
0

(b) ⌧A = ⌧B = 0.1

0 5 10 15 20 25 30

10
-4

10
-3

10
-2

10
-1

10
0

(c) ⌧A = ⌧B = 0.2

Figure 4.2: Relative error in
the approximate -✓ as a func-
tion of time for synthetic prob-
lems with < = = = 100 and
? = (1/2)1002, ⇣ = 1/2, for
Gaussian linear measurements
A. In (b), SpaRCS converged in
171 sec. (45 iterations), and in
(c), SpaRCS did not converge.
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(a) ⇣ = 0.5, ⌧A = 0.05, ⌧B = 0.15
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Figure 4.3: Error between the
approximate recovered low-
rank and sparse components
!✓ and (✓ and the true low-
rank and sparse components
!0 and (0. Error is plotted as
a function of recovery time for
synthetic problems with < =
= = 100 and ? = (1/2)1002,
⇣ = 1/2, for Gaussian linear
measurementsA.

solving Robust PCA in every iteration for the projection step whereas NAHT
performs computationally cheaper singular value decomposition (SVD) and
sparse hard thresholding projection.

Figure 4.34.3 illustrates the convergence of the individual low-rank and
sparse components k!✓ � !0k� and k(✓ � (0k� as a function of time. The
algorithms are observed to approximate the low-rank factor more accurately
than the sparse component and that the computational time increases for
larger values of sparsity fraction ⌧B . Moreover, for both NIHT and NAHT
the relative error of both components decreases together.

Figure 4.44.4 depicts the phase transitions of ⇣ above which NIHT, NAHT
and solving the convex relaxation problem in (4.34.3) successfully recovers -0
in more than half of the experiments. Comparing Figure 4.44.4 to Figure 4.14.1
we see that the phase transitions roughly occur for the same parameters
⌧A , ⌧B with only small differences due to the finite-dimensional effects of
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Figure 3: Relative error in the approximate ‖X `‖ for m = n = 100 and p = (1/2)1002, δ = 1/2 and

Gaussian A, and µ ≈ 3. In (b), SpaRCS (Waters et al., 2011) converged in 171 sec. (45 iterations).
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Thank you for your attention.
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Problems with convex Robust PCA and non-closedness

min
L∈Rm×n

‖L‖∗ + λ‖S‖1, s.t. M = L + S ,

where ‖ · ‖∗ is the nuclear norm (sum of the singular values of L) and ‖ · ‖1 denotes the

`1-norm (sum of the absolute values of the entries of S).
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(a) PCP (Candès et al., 2011) for M(1)
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(b) IALM (Lin et al., 2010) for M(1)
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Divergence of non-convex low-rank matrix completion

We are given only entries of M at indices Ω in the form of b = PΩ(M). Solving

min
X∈Rm×n

‖PΩ(X )− b‖F , s.t. rank (X ) ≤ r

recovers M for many r and an entry-wise subsampling operator PΩ : Rm×n → Rp.
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(a) ASD (Tanner & Wei, 2016) for M(1)
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