Compressed sensing of low-rank plus sparse matrices

SIMON VARY

ICTEAM, Université catholique de Louvain

joint work with Jared Tanner & Andrew Thompson

Seminar in Mathematical Engineering 26/10/2021

Compressed sensing of low-rank plus sparse matrices

Consider the following problem:

 \circ $M = L_0 + S_0 \in \mathbb{R}^{m imes n}$ such that rank $(L_0) \leq r$ and $\|S_0\|_0 \leq s$,

 $\circ b = \mathcal{A}(M) \in \mathbb{R}^p$ be a vector of p < mn linear measurements from $\mathcal{A} : \mathbb{R}^{m \times n} \to \mathbb{R}^p$.

The question is:

Can we recover L_0 and S_0 only from the subsampled information $b = \mathcal{A}(M)$ and $\mathcal{A}(\cdot)$?

Subsampled dynamic-foreground/static-background seperation

Figure 1: Recovery of a $190 \times 140 \times 150$ video sequence. The video is shaped into 26600×150 and recovered using FJLT from $\delta = 1/3$ using r = 1 and s = 197505.

Computable solution under conditions on identifiability and recoverability

Under some conditions on

- the structure of the matrix matrix $M = L_0 + S_0$ (idenitifiability) and
- the linear subsampling $\mathcal{A} : \mathbb{R}^{m \times n} \to \mathbb{R}^{p}$ (recoverability),

we can retrieve L and S from the subsampled measurement vector b = A(M), either by solving the convex optimization problem

$$(L^*, S^*) = \underset{L, S \in \mathbb{R}^{m \times n}}{\arg\min} \|L\|_* + \lambda \|S\|_1, \qquad \text{s.t.} \quad \mathcal{A}(L+S) = b, \tag{(\star)}$$

or by solving the following non-convex optimization problem

$$\min_{X \in \mathbb{R}^{m \times n}} \| \mathcal{A}(X) - b \|_{F}, \quad \text{s.t.} \quad X \in \mathsf{LS}_{m,n}(r,s), \tag{**}$$

where

$$\mathsf{LS}_{m,n}(r,s) = \left\{ L + S \in \mathbb{R}^{m \times n} : \operatorname{rank}(L) \le r, \, \|S\|_0 \le s \right\}.$$
(1)

Identifiability: Which matrices (L, S) can we hope to identify?

We wish to avoid cases of $X_0 = L_0 + S_0$ which is simultaneously low-rank <u>and</u> sparse. In linearized form this requires that the tangent spaces $T(L_0)$ and $\Omega(S_0)$ intersect transversally

$$T(L_0) \cap \Omega(S_0) = \{0\}.$$
 (2)

Incoherence of the low-rank component (Candès & Recht, 2009):

Correlation of the singular vectors of the rank-r matrix $L = U\Sigma V^T \in \mathbb{R}^{m \times n}$ and the canonical basis with the coherence parameter $\mu \in \left[1, \sqrt{mn/r}\right]$

$$\max_{i \in \{1,...,r\}} \| U^{\mathsf{T}} e_i \|_2 \le \sqrt{\frac{\mu r}{m}}, \qquad \max_{i \in \{1,...,r\}} \| V^{\mathsf{T}} e_i \|_2 \le \sqrt{\frac{\mu r}{n}}.$$
 (3)

Sparsity pattern of the sparse component (Chandrasekaran et al., 2011):

$$\exists \alpha \in [0,1): \quad \|S^{\mathsf{T}} e_i\|_0 \le \alpha n, \qquad \|S e_j\|_0 \le \alpha m, \tag{4}$$

Non-closedness: a simple example

Consider the best $LS_{3,3}(1,1)$ approximation to M

$$\min_{X \in \mathbb{R}^{3\times 3}} \|X - M\|_{F}, \quad \text{s.t.} \quad X \in \mathsf{LS}_{3,3}(1,1),$$
with $M = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \leftarrow \underbrace{\begin{bmatrix} 0 & 1 & 1 \\ 1 & \varepsilon & \varepsilon \\ 1 & \varepsilon & \varepsilon \end{bmatrix}}_{X_{\varepsilon} \in \mathsf{LS}_{3,3}(1,1)} = \underbrace{\begin{bmatrix} 1/\varepsilon & 1 & 1 \\ 1 & \varepsilon & \varepsilon \\ 1 & \varepsilon & \varepsilon \end{bmatrix}}_{L_{\varepsilon}} + \underbrace{\begin{bmatrix} -1/\varepsilon & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{S_{\varepsilon}}.$

- As $\varepsilon o 0$, the error $\|X_{\varepsilon} M\|_{F} = 2\varepsilon o 0$.
- However, X_{ε} converges to M which is outside of the feasible set LS_{3,3}(1, 1).
- As $\varepsilon \to 0 \ \|L_{\varepsilon}\|_F$ and $\|S_{\varepsilon}\|_F$ become unbounded.

Non-closedness generalization

Theorem $(\mathsf{LS}_{n,n}(r,s) \text{ is not closed for a range of } r, s \in \mathbb{N})^1$

The set of low-rank plus sparse matrices $LS_n(r, s)$ is not closed for $r \ge 1$, $s \ge 1$ provided $(r+1)(s+2) \le n$, or provided $(r+2)^{3/2}s^{1/2} \le n$ where s is of the form $s = p^2r$ for an integer $p \ge 1$.

As a consequence, there are matrices $M \in \mathbb{R}^{n \times n}$ for which Robust PCA and low-rank matrix completion are ill-posed in the sense that they have no global minimum.

 $^1 {\rm Tanner, \ Thompson}$ & Vary. (2019). Matrix rigidity and the ill-posedness of Robust PCA and matrix completion

Closing the set and making the pair (L, S) identifiable

Restrict the incoherence of the low-rank component

$$\mathsf{LS}_{m,n}(r,s,\mu) = \left\{ \begin{array}{c} \mathsf{rank}(L) \le r, \, \|S\|_0 \le s \\ L + S \in \mathbb{R}^{m \times n} : & \max_{i \in \{1,...,m\}} \|U^T e_i\|_2 \le \sqrt{\frac{\mu r}{m}} \\ & \max_{i \in \{1,...,n\}} \|V^T f_i\|_2 \le \sqrt{\frac{\mu r}{n}} \end{array} \right\}$$

This also guarantees that $\|L\|_F \leq (1 - \gamma_{r,s,\mu}^2)^{-1/2} \|X\|_F$ with $\gamma_{r,s,\mu} := \mu \frac{r\sqrt{s}}{\sqrt{mn}}$. As a consequence the set $\mathrm{LS}_{m,n}(r,s,\mu)$ is closed when $\mu < \sqrt{mn}/(r\sqrt{s}) = 1/(\alpha r)$.

The fully observed case: Robust PCA

The solution to the convex problem (*) with A = Id identifies (L, S) from M when

$$\mu < \mathcal{O}\left(\sqrt{mn}/(r\sqrt{s}) = 1/(\alpha r)\right), \qquad (\mathsf{Hsu et al., 2011}) \tag{5}$$

and there exists an algorithm for the non-convex problem $(\star\star)$ when

$$\mu < \mathcal{O}\left(\sqrt{mn}/(r^{1.5}\sqrt{s}) = 1/(\alpha r^{1.5})\right)$$
(Yi et al., 2016; Wei et al., 2019). (6)
7 / 15

Recoverability: For which $\mathcal{A}(\cdot)$ can we recover (L, S) from $b = \mathcal{A}(b)$?

Definition (Restricted isometry constants for $LS_{m,n}(r, s, \mu)$):

For every pair of integers (r, s) and every $1 \le \mu \le \sqrt{mn}/r$, define the (r, s, μ) -restricted isometry constant to be the smallest $\Delta_{r,s,\mu} > 0$ such that

$$(1 - \Delta_{r,s,\mu}) \|X\|_F^2 \le \|\mathcal{A}(X)\|_2^2 \le (1 + \Delta_{r,s,\mu}) \|X\|_F^2, \tag{7}$$

for all matrices $X \in LS_{m,n}(r, s, \mu)$.

Suppose that $\Delta_{2r,2s,\mu}(\mathcal{A}) < 1$ for some integers $r, s \geq 1$ and $\mu \geq 1$

Let $X_0, X_1 \in \mathsf{LS}_{m,n}(r,s,\mu)$ and $b_0 = \mathcal{A}(X_0)$, $b_1 = \mathcal{A}(X_1)$. Then

$$(1 - \Delta_{2r,2s,\mu}) \|X_0 - X_1\|_F^2 \le \|\mathcal{A}(X_0 - X_1)\|_2^2 \le (1 + \Delta_{2r,2s,\mu}) \|X_0 - X_1\|_F^2,$$
(8)

since $X_0 - X_1 \in LS_{m,n}(2r, 2s, \mu)$.

Recoverability: For which $\mathcal{A}(\cdot)$ can we recover (L, S) from $b = \mathcal{A}(b)$?

Theorem (Bound on the RICs for $LS_{m,n}(r, s, \mu)$)²:

For a given $m, n, p \in \mathbb{N}$, $\Delta \in (0, 1)$, $\mu < \frac{\sqrt{mn}}{r\sqrt{s}}$, and a random Gaussian subsampling transform $\mathcal{A} : \mathbb{R}^{m \times n} \to \mathbb{R}^p$ there exist constants $c_0, c_1 > 0$ such that the RIC for $\mathsf{LS}_{m,n}(r, s, \mu)$ is upper bounded with $\Delta_{r,s,\mu} \leq \Delta$ provided

$$p > c_0 \left(r(m+n-r) + s \right) \log \left(\left(1 - \gamma^2 \right)^{-1/2} \frac{mn}{s} \right), \tag{9}$$

with probability at least $1 - \exp(-c_1 p)$, where c_0, c_1 are constants that depend only on Δ and $\gamma := \mu \frac{r\sqrt{s}}{\sqrt{mn}} \leq \mu r \alpha$.

²Tanner & Vary. (2020). Compressed sensing of low-rank plus sparse matrices

Recovery by the convex relaxation

Recall the convex optimization problem

$$(L^*, S^*) = \underset{L,S \in \mathbb{R}^{m \times n}}{\arg \min} \|L\|_* + \lambda \|S\|_1, \qquad \text{s.t.} \quad \mathcal{A}(L+S) = b. \tag{(\star)}$$

Theorem (Guaranteed convex recovery):

Let $b=\mathcal{A}(X_0)$ and suppose that $r,s\in\mathbb{N}$ and $\mu<1/\left(4\sqrt{3}rlpha
ight)$ are such that the RICs satisfy

$$\Delta_{4r,3s,\mu} \le \frac{1}{5} - 12\mu r\alpha,\tag{10}$$

and $X_* = L_* + S_*$ be the solution of the convex relaxation with $\lambda = \sqrt{r/s}$, then $X_* = X_0$.

Recall the non-convex optimization:

$$\min_{X\in \mathsf{LS}_{m,n}(r,s,\mu)} \| \mathcal{A}(X) - b \|_F. \quad (\star\star$$

Algorithm 1 NAHT

1: while not converged do Compute the residual $R_i^j = \mathcal{A}^* \left(\mathcal{A}(X^j) - b \right)$ 2: 3: Set $V^j = L^j - \alpha_i^L R_I^j$ Set $L^{j+1} = \operatorname{HT}(V^j; r)$ 4: Set $X^{j+\frac{1}{2}} = I^{j+1} + S^{j}$ 5. Compute the residual $R^j_{\mathcal{S}} = \mathcal{A}^*\left(\mathcal{A}(X^{j+rac{1}{2}}) - b
ight)$ 6: Set $W^j = S^j - \alpha_i^S R_s^j$ 7: Set $S^{j+1} = \operatorname{HT}(W^j; s)$ 8: Set $X^{j+1} = I^{j+1} + S^{j+1}$ Q٠ 10: i = i + 111: end while

Incorrect theorem ((Not yet) guaranteed recovery by NAHT):

Suppose that $r, s \in \mathbb{N}$ and $\mu < \sqrt{mn}/(3r\sqrt{3s})$ are such that the restricted isometry constant

$$\Delta_3 := \Delta_{3r,3s,\mu} < \frac{1}{9} - 3\mu \frac{r\sqrt{s}}{\sqrt{mn}},\tag{11}$$

then NAHT applied to $b = \mathcal{A}(X_0)$ as described in NAHT Algorithm will linearly converge to $X_0 = L_0 + S_0$ as

$$\left\|L^{j+1} - L_{0}\right\|_{F} + \left\|S^{j+1} - S_{0}\right\|_{F} \le \frac{6\Delta_{3} + \frac{9}{2}\gamma_{2}}{1 - 3\Delta_{3} - \frac{9}{2}\gamma_{2}}\left(\left\|L^{j} - L_{0}\right\|_{F} + \left\|S^{j} - S_{0}\right\|_{F}\right),$$
(12)

where $\gamma_2 := \frac{2r\sqrt{2s}}{\sqrt{mn}}$.

Numerical phase transition: Convex relaxation and NAHT

Phase transition δ^* above which recovery is possible, where

(a) Convex recovery for 30 \times 30 matrix, $\mu \approx$ 3. (b) NAHT recovery for 100 \times 100 matrix, $\mu \approx$ 3.

13 / 15

Linear convergence of non-convex recovery

Figure 3: Relative error in the approximate $||X^{\ell}||$ for m = n = 100 and $p = (1/2)100^2$, $\delta = 1/2$ and Gaussian A, and $\mu \approx 3$. In (b), SpaRCS (Waters et al., 2011) converged in 171 sec. (45 iterations).

Thank you for your attention.

References

BLANCHARD, JEFFREY D., TANNER, JARED, & WEI, KE. 2015.

CGIHT: Conjugate gradient iterative hard thresholding for compressed sensing and matrix completion.

Information and inference, nov, iav01.

CANDÈS, EMMANUEL J., LI, XIAODONG, MA, YI, & WRIGHT, JOHN. 2011. Robust principal component analysis? Journal of the acm, 58(3), 1–37.

References ii

LIN, ZHOUCHEN, CHEN, MINMING, & MA, YI. 2010.

The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices.

sep.

TANNER, JARED, & WEI, KE. 2016.

Low rank matrix completion by alternating steepest descent methods. *Applied and computational harmonic analysis*, **40**(2), 417–429.

YI, XINYANG, PARK, DOHYUNG, CHEN, YUDONG, & CARAMANIS, CONSTANTINE. 2016. Fast algorithms for robust PCA via gradient descent.

In: Advances in neural information processing systems 29.

Zhou, Tianyi, & Tao, Dacheng. 2011.

GoDec: Randomized low-rank & sparse matrix decomposition in noisy case.

Proceedings of the 28th international conference on machine learning, 35(1), 33-40.

Problems with convex Robust PCA and non-closedness

 $\min_{L \in \mathbb{R}^{m \times n}} \|L\|_* + \lambda \|S\|_1, \quad \text{s.t.} \quad M = L + S,$

where $\|\cdot\|_*$ is the nuclear norm (sum of the singular values of *L*) and $\|\cdot\|_1$ denotes the ℓ_1 -norm (sum of the absolute values of the entries of *S*).

Divergence of non-convex low-rank matrix completion

We are given only entries of M at indices Ω in the form of $b = P_{\Omega}(M)$. Solving

$$\min_{X \in \mathbb{R}^{m \times n}} \|P_{\Omega}(X) - b\|_{F}, \quad \text{s.t.} \quad \operatorname{rank}(X) \leq r$$

recovers M for many r and an entry-wise subsampling operator $P_{\Omega} : \mathbb{R}^{m \times n} \to \mathbb{R}^{p}$.

