Compressed sensing of low-rank plus sparse matrices

Simon Vary

ICTEAM, Université catholique de Louvain

joint work with Jared Tanner & Andrew Thompson

Seminar in Mathematical Engineering 26/10/2021

Compressed sensing of low-rank plus sparse matrices

Consider the following problem:

 $\circ \ \ M=L_0+\mathcal S_0\in\mathbb R^{m\times n}$ such that $\mathsf{rank}(L_0)\leq r$ and $\| \mathcal S_0\|_0\leq s,$

 $\circ \; b = \mathcal{A}(M) \in \mathbb{R}^p$ be a vector of $p < m$ n linear measurements from $\mathcal{A}: \mathbb{R}^{m \times n} \to \mathbb{R}^p.$

The question is:

Can we recover L_0 and S_0 only from the subsampled information $b = A(M)$ and $A(\cdot)$?

Subsampled dynamic-foreground/static-background seperation

 r ecovered using FJLT from $\delta=1/3$ using $r=1$ and $s=197505$. Figure 1: Recovery of a 190 \times 140 \times 150 video sequence. The video is shaped into 26600 \times 150 and

Computable solution under conditions on identifiability and recoverability

Under some conditions on

- \circ the structure of the matrix matrix $M = L_0 + S_0$ (idenitifiability) and
- \circ the linear subsampling $\mathcal{A}:\mathbb{R}^{m\times n}\rightarrow\mathbb{R}^p$ (recoverability),

we can retrieve L and S from the subsampled measurement vector $b = A(M)$, either by solving the convex optimization problem

$$
(L^*, S^*) = \underset{L,S \in \mathbb{R}^{m \times n}}{\arg \min} ||L||_* + \lambda ||S||_1, \qquad \text{s.t.} \quad \mathcal{A}(L+S) = b,
$$
 (*)

or by solving the following non-convex optimization problem

$$
\min_{X \in \mathbb{R}^{m \times n}} \| \mathcal{A}(X) - b \|_F, \quad \text{s.t.} \quad X \in \mathsf{LS}_{m,n}(r,s), \tag{**}
$$

where

$$
LS_{m,n}(r,s) = \{L + S \in \mathbb{R}^{m \times n} : \text{rank}(L) \leq r, ||S||_0 \leq s\}.
$$
 (1)

Identifiability: Which matrices (L, S) can we hope to identify?

We wish to avoid cases of $X_0 = L_0 + S_0$ which is simultaneously low-rank and sparse. In linearized form this requires that the tangent spaces $T(L_0)$ and $\Omega(S_0)$ intersect transversally

$$
\mathcal{T}(L_0)\cap\Omega(S_0)=\{0\}\,.
$$

Incoherence of the low-rank component (Candès & Recht, 2009):

Correlation of the singular vectors of the rank-*r* matrix $L = U \Sigma V^{T} \in \mathbb{R}^{m \times n}$ and the canonical basis with the coherence parameter $\mu \in \left[1, \sqrt{mn/r}\right]$

$$
\max_{i \in \{1,\ldots,r\}} \left\| U^{\mathsf{T}} \mathbf{e}_i \right\|_2 \leq \sqrt{\frac{\mu r}{m}}, \qquad \max_{i \in \{1,\ldots,r\}} \left\| V^{\mathsf{T}} \mathbf{e}_i \right\|_2 \leq \sqrt{\frac{\mu r}{n}}.
$$
 (3)

Sparsity pattern of the sparse component (Chandrasekaran et al., 2011):

$$
\exists \alpha \in [0,1): \quad \Vert S^T e_i \Vert_0 \leq \alpha n, \qquad \Vert S e_j \Vert_0 \leq \alpha m, \tag{4}
$$

Non-closedness: a simple example

Consider the best $LS_{3,3}(1, 1)$ approximation to M

$$
\min_{X \in \mathbb{R}^{3 \times 3}} \|X - M\|_F, \quad \text{s.t.} \quad X \in LS_{3,3}(1,1),
$$
\n
$$
\text{with } M = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \leftarrow \underbrace{\begin{bmatrix} 0 & 1 & 1 \\ 1 & \varepsilon & \varepsilon \\ 1 & \varepsilon & \varepsilon \end{bmatrix}}_{X_{\varepsilon} \in LS_{3,3}(1,1)} = \underbrace{\begin{bmatrix} 1/\varepsilon & 1 & 1 \\ 1 & \varepsilon & \varepsilon \\ 1 & \varepsilon & \varepsilon \end{bmatrix}}_{L_{\varepsilon}} + \underbrace{\begin{bmatrix} -1/\varepsilon & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{S_{\varepsilon}}.
$$

- As $\varepsilon \to 0$, the error $||X_{\varepsilon} M||_F = 2\varepsilon \to 0$.
- However, X_{ε} converges to M which is outside of the feasible set $LS_{3,3}(1, 1)$.
- As $\varepsilon \to 0$ $||L_{\varepsilon}||_F$ and $||S_{\varepsilon}||_F$ become unbounded.

Non-closedness generalization

Theorem $(LS_{n,n}(r,s)$ is not closed for a range of $r,s\in\mathbb{N})^{\mathbf{1}}$ The set of low-rank plus sparse matrices $LS_n(r,s)$ is not closed for $r \geq 1$, $s \geq 1$ provided

 $(r+1)(s+2)\leq$ n, or provided $(r+2)^{3/2}s^{1/2}\leq$ n where s is of the form $s=p^2r$ for an integer $p > 1$.

As a consequence, there are matrices $M \in \mathbb{R}^{n \times n}$ for which Robust PCA and low-rank matrix completion are ill-posed in the sense that they have no global minimum.

¹Tanner, Thompson & Vary. (2019). Matrix rigidity and the ill-posedness of Robust PCA and matrix $\,$ completion $\,$ 6 $/$ 15 $\,$

Closing the set and making the pair (L, S) identifiable

Restrict the incoherence of the low-rank component

$$
LS_{m,n}(r, s, \mu) = \left\{ L + S \in \mathbb{R}^{m \times n}: \max_{i \in \{1, ..., m\}} ||U^T e_i||_2 \leq \sqrt{\frac{\mu r}{m}} \right\} \max_{i \in \{1, ..., n\}} ||U^T e_i||_2 \leq \sqrt{\frac{\mu r}{n}} \right\}
$$

This also guarantees that $\|L\|_F \leq \left(1-\gamma_{r,s,\mu}^2\right)^{-1/2} \|X\|_F$ with $\gamma_{r,s,\mu} := \mu \frac{r \sqrt{s}}{\sqrt{mn}}.$ As a consequence the set $LS_{m,n}(r,s,\mu)$ is closed when $\mu < \sqrt{mn}/(r\sqrt{s}) = 1/(\alpha r)$.

The fully observed case: Robust PCA

The solution to the convex problem (\star) with $A = Id$ identifies (L, S) from M when

$$
\mu < \mathcal{O}\left(\sqrt{mn}/(r\sqrt{s}) = 1/(\alpha r)\right), \qquad \text{(Hsu et al., 2011)}\tag{5}
$$

.

and there exists an algorithm for the non-convex problem $(\star \star)$ when

$$
\mu < \mathcal{O}\left(\sqrt{mn}/(r^{1.5}\sqrt{s}) = 1/(\alpha r^{1.5}))\right) \qquad \text{(Yi et al., 2016; Wei et al., 2019).} \qquad (6)
$$

Recoverability: For which $A(\cdot)$ can we recover (L, S) from $b = A(b)$?

Definition (Restricted isometry constants for $LS_{m,n}(r,s,\mu)$):

For every pair of integers (r,s) and every $1\leq \mu \leq \sqrt{mn}/r$, define the (r,s,μ) -restricted isometry constant to be the smallest $\Delta_{r,s,\mu} > 0$ such that

$$
(1 - \Delta_{r,s,\mu}) ||X||_F^2 \le ||\mathcal{A}(X)||_2^2 \le (1 + \Delta_{r,s,\mu}) ||X||_F^2, \tag{7}
$$

for all matrices $X \in \mathsf{LS}_{m,n}(r,s,\mu)$.

Suppose that $\Delta_{2r,2s,u}(\mathcal{A})$ < 1 for some integers $r,s \geq 1$ and $\mu \geq 1$

Let $X_0, X_1 \in \mathsf{LS}_{m,n}(r,s,\mu)$ and $b_0 = \mathcal{A}(X_0), b_1 = \mathcal{A}(X_1)$. Then

$$
(1-\Delta_{2r,2s,\mu})\|X_0-X_1\|_F^2\leq \|\mathcal{A}(X_0-X_1)\|_2^2\leq (1+\Delta_{2r,2s,\mu})\|X_0-X_1\|_F^2, \qquad \quad \ (8)
$$

since $X_0 - X_1 \in \mathsf{LS}_{m,n}(2r, 2s, \mu)$.

Recoverability: For which $A(\cdot)$ can we recover (L, S) from $b = A(b)$?

Theorem (Bound on the RICs for $\mathsf{LS}_{m,n}(r,s,\mu))^2$:

For a given $m, n, p \in \mathbb{N}$, $\Delta \in (0, 1)$, $\mu < \frac{\sqrt{mn}}{r\sqrt{6}}$ $\frac{\sqrt{mn}}{r\sqrt{s}}$, and a random Gaussian subsampling transform $\mathcal A:\mathbb R^{m\times n}\to\mathbb R^p$ there exist constants $c_0,c_1>0$ such that the RIC for ${\sf LS}_{m,n}(r,s,\mu)$ is upper bounded with $\Delta_{r,s,u} \leq \Delta$ provided

$$
p > c_0 (r(m + n - r) + s) \log \left(\left(1 - \gamma^2\right)^{-1/2} \frac{mn}{s} \right), \tag{9}
$$

with probability at least $1 - \exp(-c_1 \rho)$, where c_0, c_1 are constants that depend only on Δ and $\gamma:=\mu\frac{r\sqrt{s}}{\sqrt{mn}}\leq \mu r\alpha$.

 2 Tanner & Vary. (2020). Compressed sensing of low-rank plus sparse matrices

Recovery by the convex relaxation

Recall the convex optimization problem

$$
(L^*, S^*) = \underset{L, S \in \mathbb{R}^{m \times n}}{\arg \min} ||L||_* + \lambda ||S||_1, \qquad \text{s.t.} \quad \mathcal{A}(L+S) = b. \tag{\star}
$$

Theorem (Guaranteed convex recovery):

Let $b = \mathcal{A}(\mathcal{X}_0)$ and suppose that $r,s \in \mathbb{N}$ and $\mu < 1/ \left(4 \right)$ √ $\overline{3}r\alpha)$ are such that the RICs satisfy

$$
\Delta_{4r,3s,\mu} \leq \frac{1}{5} - 12\mu r\alpha, \tag{10}
$$

and $X_* = L_* + S_*$ be the solution of the convex relaxation with $\lambda = \sqrt{r/s}$, then $X_* = X_0.$

Recall the non-convex optimization:

$$
\min_{X \in \mathsf{LS}_{m,n}(r,s,\mu)} \| \mathcal{A}(X) - b \|_F. \quad (\star \star)
$$

Algorithm 1 NAHT

1: while not converged do 2: Compute the residual $R_L^j = A^* \left(A(X^j) - b \right)$ 3: Set $V^j = L^j - \alpha_j^L R_L^j$ 4: Set $L^{j+1} = HT(V^{j}; r)$ 5: Set $X^{j+\frac{1}{2}} = L^{j+1} + S^j$ 6: Compute the residual $R^{j}_{\mathcal{S}}=\mathcal{A}^*\left(\mathcal{A}(X^{j+\frac{1}{2}})-b\right)$ 7: Set $W^j = S^j - \alpha_j^S R_S^j$ 8: Set $S^{j+1} = HT(W^j; s)$ 9: Set $X^{j+1} = L^{j+1} + S^{j+1}$ 10: $i = i + 1$ 11: end while

Incorrect theorem ((Not yet) guaranteed recovery by NAHT):

Suppose that $r, s \in \mathbb{N}$ **and** $\mu < \sqrt{mn}/(3r\sqrt{3s})$ **are such that the restricted isometry constant**

$$
\Delta_3 := \Delta_{3r,3s,\mu} < \frac{1}{9} - 3\mu \frac{r\sqrt{s}}{\sqrt{mn}},\tag{11}
$$

then NAHT applied to $b = A(X_0)$ as described in NAHT Algorithm will linearly converge to $X_0 = L_0 + S_0$ as

$$
\left\| L^{j+1} - L_0 \right\|_F + \left\| S^{j+1} - S_0 \right\|_F \leq \frac{6\Delta_3 + \frac{9}{2}\gamma_2}{1 - 3\Delta_3 - \frac{9}{2}\gamma_2} \left(\left\| L^j - L_0 \right\|_F + \left\| S^j - S_0 \right\|_F \right), \tag{12}
$$

where $\gamma_2 := \frac{2r\sqrt{n}}{\sqrt{n}}$ $\frac{2r\sqrt{2s}}{\sqrt{mn}}$.

Numerical phase transition: Convex relaxation and NAHT

Phase transition δ^* above which recovery is possible, where

(a) Convex recovery for 30 \times 30 matrix, $\mu \approx$ 3. (b) NAHT recovery for 100 \times 100 matrix, $\mu \approx$ 3.

Linear convergence of non-convex recovery

 $\overline{1}$ Figure 3: Relative error in the approximate $\|X^{\ell}\|$ for $m=n=100$ and $p=(1/2)100^2$, $\delta=1/2$ and Gaussian A, and $\mu \approx 3$. In (b), SpaRCS (Waters et al., 2011) converged in 171 sec. (45 iterations). Thank you for your attention.

[References](#page-16-0)

Blanchard, Jeffrey D., Tanner, Jared, & Wei, Ke. 2015.

CGIHT: Conjugate gradient iterative hard thresholding for compressed sensing and matrix completion.

Information and inference, nov, iav01.

CANDÈS, EMMANUEL J., LI, XIAODONG, MA, YI, & WRIGHT, JOHN. 2011.

Robust principal component analysis?

Journal of the acm, $58(3)$, 1-37.

References ii

Lin, Zhouchen, Chen, Minming, & Ma, Yi. 2010.

The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices.

sep.

Tanner, Jared, & Wei, Ke. 2016.

Low rank matrix completion by alternating steepest descent methods. Applied and computational harmonic analysis, 40(2), 417–429.

Yi, Xinyang, Park, Dohyung, Chen, Yudong, & Caramanis, Constantine. 2016. Fast algorithms for robust PCA via gradient descent.

In: Advances in neural information processing systems 29.

ZHOU, TIANYI, & TAO, DACHENG. 2011.

GoDec: Randomized low-rank & sparse matrix decomposition in noisy case.

Proceedings of the 28th international conference on machine learning, 35(1), 33–40.

Problems with convex Robust PCA and non-closedness

 $\min_{L \in \mathbb{R}^{m \times n}} ||L||_* + \lambda ||S||_1$, s.t. $M = L + S$,

where $\|\cdot\|_*$ is the nuclear norm (sum of the singular values of L) and $\|\cdot\|_1$ denotes the ℓ_1 -norm (sum of the absolute values of the entries of S).

Divergence of non-convex low-rank matrix completion

We are given only entries of M at indices Ω in the form of $b = P_{\Omega}(M)$. Solving

$$
\min_{X \in \mathbb{R}^{m \times n}} \|P_{\Omega}(X) - b\|_F, \quad \text{s.t.} \quad \text{rank}(X) \leq r
$$

recovers M for many r and an entry-wise subsampling operator $P_{\Omega}:\mathbb{R}^{m\times n}\to\mathbb{R}^p.$

