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Compressed sensing of low-rank plus sparse matrices

Consider the following problem:

o M = Lo+ So € R™*" such that rank(Lp) < r and ||Sollo < s,

o b= A(M) € RP be a vector of p < mn linear measurements from A : R™*" — RP,

The question is:

Can we recover Ly and Sy only from the subsampled information b = A(M) and A(-)?
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Subsampled dynamic-foreground/static-background seperation
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Figure 1: Recovery of a 190 x 140 x 150 video sequence. The video is shaped into 26600 x 150 and
recovered using FJLT from § = 1/3 using r =1 and s = 197505.
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Computable solution under conditions on identifiability and recoverability

Under some conditions on

o the structure of the matrix matrix M = Ly + Sp (idenitifiability) and

o the linear subsampling A : R™*" — RP (recoverability),

we can retrieve L and S from the subsampled measurement vector b = A(M), either by
solving the convex optimization problem

(L*,5*) = argmin ||L]||« + A||S]|1, st. A(L+S)=b, (%)
Ran

)

or by solving the following non-convex optimization problem

min [[A(X) = bllr, st. X €LSmn(r,s), (%)
XGR/‘NXN
where
LSmn(r,s) = {L+S €R™": rank(L) <r, [|S]o < s}. (1)
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Identifiability: Which matrices (L, S) can we hope to identify?

We wish to avoid cases of Xy = Lg + Sg which is simultaneously low-rank and sparse. In
linearized form this requires that the tangent spaces T(Lg) and Q(Sp) intersect transversally

T(Lo) N€Q2(S) = {0} (2)
Incoherence of the low-rank component (Candés & Recht, 2009):

Correlation of the singular vectors of the rank-r matrix L = UXVT € R™*" and the canonical
basis with the coherence parameter p € [1, \/mn/r]

nex 10 el < \E max [|VTeil, </ 3)

i€{l,...,r i€{l,...,r}
Sparsity pattern of the sparse component (Chandrasekaran et al., 2011):

Ja €[0,1): ||5Te,-|\0 < an, [I1Seillo < am, (4)
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Non-closedness: a simple example

Consider the best LS33(1,1) approximation to M

min ||X - MHF, st. X¢€ |_S3}3(].7 1),

XER3x3
01 1 0 1 1 1/e 1 1 —-1/e 0 O
with M= 1|1 0 0| < |1 € e|=|1 € e|+ 0 0 0
1 00 1 ¢ ¢ 1 ¢ ¢ 0 0 0
X:€LS35(1,1) L Se

- As e — 0, the error | X; — M||g =2 — 0.

- However, X. converges to M which is outside of
the feasible set LS33(1,1).

- Ase — 0 ||Lc||F and ||Sc||F become unbounded.

Objective || X — M||p

X X X3 Xy

Feasible set LS3(1,1)
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Non-closedness generalization

Theorem (LS, »(r,s) is not closed for a range of r,s € N)!

The set of low-rank plus sparse matrices LS,(r,s) is not closed for r > 1, s > 1 provided
(r+1)(s+2) < n, or provided (r + 2)3/?s'/2 < n where s is of the form s = p?r for an

integer p > 1.

As a consequence, there are matrices M € R"*" for which Robust PCA and low-rank matrix

completion are ill-posed in the sense that they have no global minimum.

t
2

s=0(n")

N

maximally rigid
3 LS (0(n), O(n?))

ITanner, Thompson & Vary. (2019). Matrix rigidity and the ill-posedness of Robust PCA and matrix

completion
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Closing the set and making the pair (L, S) identifiable

Restrict the incoherence of the low-rank component

rank(L) < r, [|S|lp < s
LSm,n(rvshu’) =qL+SeR™: MmaX;e(1,...,m} ||UTei||2 < V %
maxieqa,...np |V filla < /B

This also guarantees that [|L[|r < (1 — wf’s’#)_lm X || with .6, = p

Vmn'

As a consequence the set LS, »(r, s, i) is closed when p < /mn/(r\/s) =1/(ar).
The fully observed case: Robust PCA

The solution to the convex problem (x) with A = Id identifies (L, S) from M when

1< O (vVmn/(rvs) =1/(ar)), (Hsu et al., 2011)

and there exists an algorithm for the non-convex problem (xx) when

p < O (Vmn/(r'®/s) = 1/(ar'®))) (Yi et al., 2016; Wei et al., 2019).



Recoverability: For which A(-) can we recover (L,S) from b = A(b)?

Definition (Restricted isometry constants for LS, ,(r,s, 1t)):

For every pair of integers (r,s) and every 1 < u < \/mn/r, define the (r,s, u)-restricted
isometry constant to be the smallest A, , > 0 such that

(1= D) IXIE < TAXNZ < (14 Ars) IXE, (7)

for all matrices X € LS, »(r, s, ).

Suppose that A, o ,(A) < 1 for some integers r,s > 1 and ;> 1

Let Xo, X1 € LSm.n(r,s, ) and by = A(Xp), b1 = A(X1). Then
(1= Darzs,) [1Xo = XallE < IJAXo = X3 < (1 + Dars) [Xo — XallZ, (8)

since Xo — X1 € LS, »(2r, 25, p).
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Recoverability: For which A(-) can we recover (L,S) from b = A(b)?

Theorem (Bound on the RICs for LS, ,(r,s, 1))

For a given m;n,p e N, A € (0,1), u < @ and a random Gaussian subsampling transform

A R™*" — RP there exist constants ¢y, ¢; > 0 such that the RIC for LS, (r, s, 1) is upper
bounded with A, , < A provided

p>co(r(m+n—r)+s)log ((1 - 72)_1/2 %) , (9)

with probability at least 1 — exp (—c1p), where ¢y, 1 are constants that depend only on A

and v := u\r/% < prao.

2Tanner & Vary. (2020). Compressed sensing of low-rank plus sparse matrices
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Recovery by the convex relaxation

Recall the convex optimization problem

(L*,5*) = argmin ||L]|.« + A||S]1, st. A(L+S)=b. (%)
L,SERm*n

Theorem (Guaranteed convex recovery):

Let b = A(Xo) and suppose that r,s € N and y < 1/ (4v/3ra) are such that the RICs satisfy
1
A4r,3s,/L < g - 12;1,/’0[, (10)

and X, = L, + S, be the solution of the convex relaxation with A = \/r/s, then X, = Xj.
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Recovery by non-convex algorithms: Normalized Alternating Hard Thresholding

Algorithm 1 NAHT
1: while not converged do
2 Compute the residual R] = A" (A(X/) — b)
3: Set V/ =1J — ajL R]
4. Set U =HT(V/; r)
5
6

Recall the non-convex optimization:

e I A(X) = bllr. ()

Set Xit: = [J*1 4+ &
Compute the residual R. = A* (A(XH%) — b)
7: Set W/ =5/ — af RJS'
8: Set S/t = HT(W/; s)
: Set XJ*1 = [j+1 4 G+l
10: Jj=Jj+1
11: end while
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Recovery by non-convex algorithms: Normalized Alternating Hard Thresholding

Incorrect theorem ((Not yet) guaranteed recovery by NAHT):
Suppose that r,s € N and p < \/mn/ (3r/3s) are such that the restricted isometry constant

1 rv/'s
Az = A — — 11
3 3r,3s,1 < 9 3,“\/%7 ( )

then NAHT applied to b = A(Xp) as described in NAHT Algorithm will linearly converge to
Xo = Lo + So as

, : 63 + 2
[~ Lol + |54~ o] < 22

_PB3TR i J
“3m, = 0, IE = Lolle +1S7= Soll) - (12)

where v, = 2’—\/"%75
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Numerical phase transition: Convex relaxation and NAHT

Phase transition §* above which recovery is possible, where

subsampling: § = %, rank: p, = r(m+;r)’ sparsity: ps =s/p
1 1
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(a) Convex recovery for 30 x 30 matrix, u 2 3. (b) NAHT recovery for 100 X 100 matrix, p = 3.
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Linear convergence of non-convex recovery
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Figure 3: Relative error in the approximate || X*|| for m = n = 100 and p = (1/2)100%, § = 1/2 and

Gaussian A, and p = 3. In (b), SpaRCS (Waters et al., 2011) converged in 171 sec. (45 iterations).
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Thank you for your attention.
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Problems with convex Robust PCA and non-closedness

Lmln LI« + AlIS]l1, st M=L+S,

where || - ||« is the nuclear norm (sum of the singular values of L) and || - |1 denotes the
¢1-norm (sum of the absolute values of the entries of S).
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Divergence of non-convex low-rank matrix completion

We are given only entries of M at indices Q in the form of b = Pq(M). Solving

min ||Po(X) — b|lr, s.t. rank(X)<r
XERmxn

recovers M for many r and an entry-wise subsampling operator Pq : R™*" — RP,
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