
25th International Symposium on Mathematical Theory of Networks and Systems MTNS 2022

Optimization flows landing on 
the Stiefel manifold
joint work with Bin Gao**, Pierre Ablin***, Pierre-Antoine Absil* 

* ICTEAM, Université catholique de Louvain 
** Institute for Applied Mathematics, University of Münster 
*** CNRS, Université Paris-Dauphine, PSL University 

Machine Learning Group, Apple, Paris 

Simon Vary*

12/09/22






Applications such as


• Principal component analysis       


• Independent component analysis


• Orthogonal weights in deep learning

min
X∈ℝn×p

f(x) s . t . St(p, n) := {X ∈ ℝn×p : X⊤X = Ip}

max
X∈St(p,n)
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Optimization over the Stiefel manifold
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• 


• Retraction: QR , Cayley 


•    ( )

Xt+1 = RXt(−grad f(Xt))

𝒪(np2) 𝒪(p3)

grad f(X) = skew(∇f(X)X⊤)X 𝒪(np2)

Optimization approaches
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Riemmanian optimization

• Penalty methods:       


• Augmented Lagrangian Method


• Adaptively choosing parameters can be tricky


• Gradient of the penalty:  (mat. mult. )


+
1
4σ

∥X⊤X − Ip∥2
F

X(X⊤X − Ip) 𝒪(np2)

Infeasible constrained optimization

from lecture slides of Coralia Cartis

 



Landing field
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• Consider the following flow





where





and


• ,  with  


• ,  with  

·X(t) = − Λ (X (t)),

Λ(X) := ψ(X)X + λ∇𝒩(X),

∇𝒩(X) = X(X⊤X − Ip) 𝒩(X) :=
1
4

X⊤X − Ip
2

F
,

ψ(X) = 2skew (∇f(X)X⊤) skew(A) =
1
2 (A − A⊤)
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Fast and accurate optimization
on the orthogonal manifold without retraction

Pierre Ablin Gabriel Peyré
CNRS, Département de mathématiques et applications

ENS, PSL University

Abstract

We consider the problem of minimizing a func-
tion over the manifold of orthogonal matrices.
The majority of algorithms for this problem
compute a direction in the tangent space, and
then use a retraction to move in that direction
while staying on the manifold. Unfortunately,
the numerical computation of retractions on
the orthogonal manifold always involves some
expensive linear algebra operation, such as
matrix inversion, exponential or square-root.
These operations quickly become expensive
as the dimension of the matrices grows. To
bypass this limitation, we propose the land-
ing algorithm which does not use retractions.
The algorithm is not constrained to stay on
the manifold but its evolution is driven by a
potential energy which progressively attracts
it towards the manifold. One iteration of the
landing algorithm only involves matrix mul-
tiplications, which makes it cheap compared
to its retraction counterparts. We provide
an analysis of the convergence of the algo-
rithm, and demonstrate its promises on large-
scale and deep learning problems, where it is
faster and less prone to numerical errors than
retraction-based methods.

1 Introduction

We consider a differentiable function f from Rp⇥p to
R, and want to solve the problem

min
X2Op

f(X) , (1)
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Figure 1: Trajectories of the landing algorithm and of
a retraction gradient descent with p = 2. The iterates
are 2⇥ 2 matrices, the x-axis corresponds to coefficient
(1, 1) of the matrices, and the y-axis to coefficient (1, 2).
The retraction method stays on Op (black dotted line)
while the landing algorithm can deviate. Both methods
start from X0 and converge to the correct solution X⇤.
In higher dimension, the landing algorithm is much
cheaper than the retraction method.

where Op is the Orthogonal manifold, that is the set
of matrices X 2 Rp⇥p such that XX>

= Ip. Prob-
lem (1) appears in many practical applications, like
principal component analysis, independent component
analysis [12, 28, 1], procrustes problem [33], and more
recently in deep learning, where the weights of a layer
are parametrized by an orthogonal matrix [5, 7]. This
is a particular instance of minimization over a matrix
Riemannian manifold, Op [13]. Many standard Eu-
clidean algorithms for function minimization have been
adapted on Riemannian manifolds. We can cite for
instance gradient descent [3, 39], second order quasi-
Newton methods [2, 31], and stochastic methods [8]
which are the workhorse for training deep neural net-
works. More recently, several works propose to adapt
accelerated methods in the Riemannian setting [40, 34].

All these methods are feasible, i.e. generate a sequence
of iterates Xk where each iterate is in Op. Unlike what
we assume in the first sentence of the present article,
they do not need the function f to be defined outside
Op. This comes with a computational drawback: in
order to compute Xk+1 from Xk, one needs a way to
move and stay on the manifold, called retraction [4].
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Fast and accurate optimization on the orthogonal manifold. 
Ablin & Peyré, AISTATS 2022



Interpretation of the landing field
(on the Stiefel manifold)




• Orthogonality





• Interpretation of  in the canonical metric *





• What is the interpretation when away from the Stiefel manifold?

Λ(X):= ψ(X)X + λ∇𝒩(X)
= 2skew (∇f(X)X⊤) X + λX(X⊤X − Ip)

⟨ψ(X)X, X(X⊤X − Ip⟩ = 0

ψ(X)X gc
X( ⋅ , ⋅ )

ψ(X)X = Proj𝒯XSt(p,n) ∇f(X) = grad f(X)

gc
X(ξ, ζ) := ⟨ξ, (In −

1
2

XX⊤)ζ⟩ for all ξ, ζ ∈ ℝn×p,
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t

−∇𝒩(X)

ψ(X)X

ψ(X)X = grad f(x)

𝒯X St(p, n)

* The Geometry of Algorithms with Orthogonality Constraints. 
Edelman et. al, SIAM. J. Matrix Anal. & Appl. 1998



Interpretation of the landing field
(away from the Stiefel manifold)

• Consider a generalization of the Stiefel manifold and a map


    and   


• We can define a metric


      where     

∀M ≻ 0 : StM(p, n) := {Y ∈ ℝn×p : Y⊤Y = M} ΦM : ℝn×p → ℝn×p : X ↦ Y = XM
1
2 .

gY(ξ, ζ) := gc
Φ−1

M (Y) (Φ−1
M (ξ), Φ−1

M (ζ)) gc
X(ξ, ζ) := ⟨ξ, (In −

1
2

XX⊤)ζ⟩
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(St(p, n), gc) (StM(p, n), g)
 isometryΦM



Interpretation of the landing field
(on the generalized Stiefel manifold )StX⊤X(p, n)

• Riemannian gradient of  on 





• The normal component belongs to the normal space


f (StX⊤X(p, n), gX⊤X)
gradStX⊤X(p,n) f(X) = ψ(X)X

∇𝒩(X) ∈ NXStX⊤X(p, n)

where in the second equality we rearranged the terms
in the inner product, the third equality can be verified
by expanding the sum with the identity and writing out
the definition of  (X), the fourth equality comes from
the fact that symmetric matrices are orthogonal to skew-
symmetric matrices, and in the last fifth equality we move
X> to the right side of the Frobenius inner product.
According to the definition (10), it yields the result. 2

The above Proposition 4 and the expression of the nor-
mal space in Proposition 3 give a clear interpretation of
both components of the landing field ⇤(X) =  (X)X +
�rN (X). Specifically,  (X)X is the Riemannian gradient
of f on the submanifold (StX>X(p, n), g), and

rN (X) = X(X>X)�1((X>X)2 �X>X)

belongs to the normal space NXStX>X(p, n). Conse-
quently, ⇤(X) is the linear combination of the two or-
thogonal fields in the tangent and the normal space of
(StX>X(p, n), g); see Fig. 2 for a geometric illustration.
The orthogonal property will have important consequences
in the next section where we analyze convergence of the
landing flow.

Rn⇥p

X

StX>X(p, n)

TXStX>X(p, n)

NXStX>X(p, n)

� (X)X = �gradf(X)

��rN (X)�⇤(X)

f

St(p, n) = StIp (p, n)

Fig. 2. Geometric interpretation of the orthogonal compo-
nents of the landing field.

5. CONVERGENCE OF THE LANDING FLOW

In this section, we establish a convergence analysis for the
solutions of the landing system (2), denoted as 't(X0)
for a starting point X0 2 Rn⇥p

⇤ and for all t � 0. The
proof consists of two parts, firstly by the convergence of
X(t)>X(t) to Ip and secondly by the convergence of X(t)
to the set of critical points of f relative to St(p, n).

Standing assumption: rf is locally Lipschitz continuous.

We show that the solutions of the landing system exist and
are unique, thus making the landing flow well defined.

Proposition 5. (Existence and uniqueness). For the land-
ing system (2) starting at X0 2 Rn⇥p

⇤ , there exists a
unique solution t 7! 't(X0) defined for all t � 0 such
that '0(X0) = X0. Moreover, we have that N ('t(X0)) is
nonincreasing.

Proof. Di↵erentiating N (X(t)) with respect to t gives

d

dt
N (X(t)) = hẊ(t),rN (X(t))i

= �h (X(t))X(t) + �rN (X(t)),rN (X(t))i
= �� krN (X(t))k2F  0,

where the second equality comes from the definition of the
landing field and the last equality is the consequence of
 (X)X being orthogonal to rN (X(t)). Hence, N (X(t))
is nonincreasing and each solution of the landing system
remains in a compact set. By rf being locally Lipschitz,
we have that ⇤(X) is also locally Lipschitz. By the
Picard–Lindelöf theorem, the landing system has a unique
solution. 2

It is worth noting that Proposition 5 holds for any � > 0.
This is due to the orthogonality of the two components
of the landing field. By contrast with the landing field,
the components of the PLAM field ⇤̃ defined in (4) do
not satisfy the orthogonal property, and as a consequence,
the existence of its flow requires a lower threshold on
� > �0 > 0 (Gao et al., 2019).

Since N ('t(X0)) is nonincreasing and the set of minimiz-
ers of N is the Stiefel manifold, it follows that the Stiefel
manifold is an invariant of the landing flow. Recall also
that, on the Stiefel manifold, the landing flow reduces to
the Riemannian gradient flow with respect to the canonical
metric.

5.1 Convergence of X>X to Ip

The following result shows that the landing flow 't(X0)
converges to St(p, n) as t ! 1 for any X0 2 Rn⇥p

⇤ .

Proposition 6. (Convergence to the Stiefel manifold). For
all X0 2 Rn⇥p

⇤ , we have that 't(X0) 2 Rn⇥p
⇤ for all t > 0

and
lim
t!1

N ('t(X0)) = 0.

Proof. Let �(t) := X(t)>X(t) with X(t) following the
dynamics of the landing system (2). Di↵erentiating �(t)
with respect to t yields

�̇(t) = Ẋ(t)>X(t) +X(t)>Ẋ(t)
= �2��(t) (�(t)� Ip)

By the right hand side being a matrix polynomial function
of a symmetric matrix �(t), we have that �(t) has constant
eigenvectors for all t � 0 and its eigenvalues {�i}pi=1 follow
�̇i(t) = �2��i(t)(�i(t)� 1). The solution of the ODE for
the eigenvalues can be computed explicitly as

�i(t) =
�i(0)e2�t

�i(0)(e2�t � 1) + 1
.

Since � > 0 and �i(0) > 0 because X0 2 Rn⇥p
⇤ is of full

rank, we have that limt!1 �i(t) = 1, i.e., all eigenvalues
of �(t) converge to 1. Hence �(t) converges to Ip, and thus
N ('t(X0)) converges to 0. 2

5.2 Convergence of the landing flow

Let C denote the set of critical points of f relative to
St(p, n). Since  (X)X is the Riemannian gradient on
St(p, n) with the canonical metric when X 2 St(p, n),
according to Absil et al. (2008, §4.1), it follows that

C = {X⇤ 2 St(p, n) :  (X⇤)X⇤ = 0} .
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Convergence of the landing flow
(existence and uniqueness)

Differentiate 


 


• hence  is nonincreasing and remains in a closed compact set,


• for  locally Lipschitz,  is also locally Lipschitz and, 


• by Picard–Lindelöf theorem, there is a unique solution  such that 

𝒩 (X(t))
d
dt

𝒩(X(t)) = ⟨ ·X(t), ∇𝒩(X(t))⟩

= − ⟨ψ(X(t))X(t) + λ∇𝒩(X(t)), ∇𝒩(X(t))⟩
= − λ∥∇𝒩(X(t))∥2

F ≤ 0, for any λ > 0

𝒩 (X(t))
∇f(X) Λ(X)

t ↦ φt(X0) φ0(X0) = X0

8

by orthogonality



Convergence of the landing flow
(convergence to the Stiefel manifold)

• Let 





• polynomial of a symmetric matrix =>  has constant eigenvectors


• The eigenvalues of  evolve as: 


  ,     thus   


χ(t) = X(t)⊤X(t)
·χ(t) = ·X(t)⊤X(t) + X(t)⊤ ·X(t), where ·X(t) = − Λ (X (t)) = ψ (X(t)) X(t) + λ∇𝒩 (X(t))

= − 2λ χ(t)(χ(t) − Ip),

χ(t)

χ(t)

χi(t) =
χi(0)e2λt

χi(0)(e2λt − 1) + 1
⟶ 1, for λ > 0 lim

t→∞
𝒩(ϕt(X0)) = 0.
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Convergence of the landing flow
(convergence to the local minima)
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• Let  be the set of critical points on the manifold, we have


     by  being a Riemannian gradient and 


                                                                   by orthogonality of  and 


• For all , the -limit points of  belong to .  
Therefore, the landing system converges to the set of  
critical points of  relative to .


• For all , if  is a local minimum and isolated critical point of   
relative to , and if  is an -limit point of , then .

𝒞 ⊆ St(p, n)

X* ∈ 𝒞 if and only if Λ(X*) = 0, ψ(X)X

ψ(X)X ∇𝒩(X*)

X0 ∈ ℝn×p
* ω φt(X0) 𝒞

·X(t) = − Λ (X (t)),
f St(p, n)

X0 ∈ ℝn×p
* X* f

St(p, n) X* ω φt(X0) lim
t→∞

φt(X0) = X*



Landing algorithm
• Discretize the flow


•      where   


• Numerical experiments with Stochastic gradient descent (SGD) to compare


• Riemannian SGD (Retraction -QR)


• -penalty (regularization with )


• Fixed step-size , landing parameter 

Xt+1 = Xt − ηt Λ (Xt), ψ(X)X + λ∇𝒩(X),

ℓ2 +
λ
4

∥X⊤X − Ip∥2
F

η = 0.1 λ = 1

11



Online PCA
Consider





where


• , with 


• 


with Stochastic gradient descent with batch size 
of 128 rows.

min −
1
2

AX
2
F s . t . X ∈ St(p, n),

A ∈ ℝm×n m = 10 000, n = 2 000

p = 1 000
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Orthogonal convolutional neural network*
Consider





where


•  is a VGG16** convolutional neural network


•  includes 13 matrices with size 


• trained on CIFAR-10


with a batch size of 128 samples, fixed step-size

min
N

∑
i

ℓ( fΘ(xi), yi) s . t . ∀θ ∈ Θorth : θi ∈ St(p, n)

fΘ( ⋅ )

Θorth ≈ (1 000)2

13** Very Deep Convolutional Net. for Large-Scale Image Recognition 
Simonyan & Zisserman, ICLR 2015

* Orthogonal convolutional neural networks 
Wang et al., CVPR 2020



Conclusions

• We propose a landing flow/algorithm and 


• provide a geometric interpretation of the field


• analyze the continuous gradient flow and show its convergence to local minima


• demonstrate with numerical experiments its efficiency


• Future work:


• analysis of the discrete case


• clever rules for the step-sizes in terms of  and 


• possible extensions, for example higher-order and acceleration

λ η
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