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abstract

Expressing a matrix as the sum of a low-rank matrix plus a sparse matrix
is a flexible model capturing global and local features in data, and is the
foundation of robust principal component analysis (Candès et al.Candès et al., 20112011). This
thesis is concerned with low-rank plus sparse matrix sensing—the problem of
recovering a matrix that is formed as the sum of a low-rank and a sparse
matrix, and the two components, fromanumberofmeasurements far smaller
than the dimensionality of the matrix.

It is well-known, that inverse problems over low-rank matrices, such as
robust principal component analysis and matrix completion, require a low
coherence between the low-rank matrix and the canonical basis. However,
in this thesis, we demonstrate that the well-posedness issue is even more
fundamental; in some cases, both robust principal component analysis and
matrix completion can fail to have any solutions due to the fact that the set
of low-rank plus sparse matrices is not closed. As a consequence, the lower
restricted isometry constants (RICs) cannot be upper bounded for some
low-rank plus sparse matrices unless further restrictions are imposed on the
constituents. We close the set of low-rank plus sparse matrices by posing an
additional bound on the Frobenius norm of the low-rank component, and
ensure the optimisation is well-posed and that the RICs can be bounded.
We show that constraining the incoherence of the low-rank component also
closes the set provided � <

√
<=

/ (
A
√
B
)
and satisfies a certain additivity

property necessary for the analysis of recovery algorithms.
Compressed sensing, matrix completion, and their variants have estab-

lished thatdata satisfying lowcomplexitymodels can be efficientlymeasured
and recovered from a number of measurements proportional to the model
complexity rather than the ambient dimension (Foucart and RauhutFoucart and Rauhut, 20132013).
This thesis develops similar guarantees showing that<×=matrices that can
be expressed as the sumof a rank-Amatrix and a B-sparsematrix can be recov-
eredby computationally tractablemethods fromO(A(<+=−A)+B) log (<=/B)
linear measurements. More specifically, we establish that the RICs for the
aforementionedmatrices remain bounded independent of problem size pro-
vided ?/<=, B/?, and A(<+=−A)/? remain fixed. Additionally,we show that
semidefinite programming and two hard threshold gradient descent algo-
rithms,NIHTandNAHT,converge to themeasuredmatrixprovided themea-
surement operator’s RICs are sufficiently small. The convex relaxation and
NAHT also provably solve Robust PCA with the optimal order of the num-
ber of corruptions B = O

(
<=/

(
�2A2) ) . Numerical experiments illustrating

these results are shown for synthetic problems, dynamic-foreground/static-
background separation, and multispectral imaging.
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1introduction

Parsimony concepts of low-rank and sparsity have a wide range of appli-
cations in mathematical modelling, statistics, and computation. Their com-
bined additive structure forms a flexible model capturing global and lo-
cal features in data, and is the foundation of robust principal component
analysis. This thesis is dedicated to the study of mathematical theory and
algorithms that allow for exact recovery of low-rank plus sparse matrices in
an information restrained setting.

1.1 motivation

More than half a century ago, TukeyTukey (19621962) coined the term data analysis, and
with it, made a case for a new scientific discipline in a practical pursuit of
learning from data. Like statistics, this new science also seeks to infer from
the particular to the general, but unlike statistics, data analysis also includes,
among other things: techniques for interpreting data, ways of planning
gathering of data, and all the machinery needed for analysing data.

Since Tukey’s paper, there have been major advances in information
theory, digitisation and computing. The last fifty years have witnessed an
explosion of digital devices and sensors that generate an unprecedented
amount of information. It is estimated that in 2020 there were around 30
billion devices communicating through the internet—a figure projected to
double in the next few years (NordrumNordrum, 20162016).

Hand in handwith the scale comes the immense cost of acquiring, storing,
processing and transmission of information in ever-increasing volumes. In
order to perform such tasks, it is necessary to perform computation over the
data and analyse it in an interpretable way.

The large scale pushes the traditional frame of thought in computing and
statistics. Optimisation problems arising in data-oriented applications often
have millions of parameters and require billions of floating-point operations.
Modern statistics has to deal with high-dimensional datasets, i.e. when the
number of samples might be lower than its dimension, and to explain the
generalisation of highly overparameterised models.

Fortunately, the actual information content in datasets is often far lower
than the ambient dimensionwould suggest. This principle of a latent simpler
structure is essential and ismosteasilyapparent in the success of compression—
a process which exploits redundancies in data in the search of simpler
representations of datasets. Hidden simplicities of data allow for fast transfer
across the network and lower storage requirements of many compressed
data formats.
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However, the idea of detecting simple structures in datasets has far-
reaching implications beyond just compression: it offers advantages in inter-

pretability, cheaper acquisition, and faster computation.

(i) Interpretability based on sparsity and rank is the core principle of
statistical techniques such as LASSO estimation, which finds a se-
lection of important factors out of many (TibshiraniTibshirani, 19961996), or PCA,
which finds a lower-dimensional subspace that preserves the maxi-
mal amount of statistical variance (PearsonPearson, 19011901; HotellingHotelling, 19331933).
Additionally, the simpler model is often more correct. The princi-
ple of Occam‘s razor tells us that: “Among competing explanations
for a phenomenon, the simplest one is the best”, and in mathemat-
ics, simplicity is often expressed through the notion of sparsity or
low-rank.

(ii) Acquisition of data can be prohibitively expensive in many applica-
tions, either in terms of time or money. Moreover, often the data is
compressed right after the acquisition, i.e. simplified using sparsity
or low-rank, to be subsequently stored or transmitted. Compressed

sensing is a novel sampling paradigm,which states that it is sufficient
to take a fewer number of measurements proportional to the com-
plexity of the data in its compressed form provided the signal comes
froma low-ordermodel, e.g. it has a sparse (Candès and RechtCandès and Recht, 20092009)
or a low-rank representation (Recht et al.Recht et al., 20102010).

(iii) Computation required for modelling of large physical systems or
optimisation problems in engineering sciences can be stupendously
costly in terms of time and hardware. Many of the successful nu-
merical algorithms are based on clever tricks utilising a low-order
structure, such as low-rank or sparsity, arising in such problems. For
example, Greengard and RokhlinGreengard and Rokhlin (19971997) exploit the fact that matri-
ces that appear in the simulation of interacting particle systems
are well approximated by a hierarchical low-rank matrices lead-
ing to a method with a linear instead of a quadratic complexity.
Halko et al.Halko et al. (20112011) design an algorithm that can significantly speed
up computing singular value decomposition through randomised
sketching if used on matrices approximable by low-rank matrices.
Burer and MonteiroBurer and Monteiro (20032003) use a low-rank factorisation for param-
eterisation of semidefinite programming optimisation making the
computation manageable even for large problem sizes. The list goes
on.

Interpretability, computation, the information content in data, and the
interplay between those, are at the heart of data analysis, and thus, are at
the centre of the focus of this thesis.

It will be necessary to evaluate algorithms based on howmuch resources
they require, in terms of computation and information. To this end, we will

§1.1 · motivation 2



employ the notion of the computational complexity and the sample complexity of
an algorithm.While the formerreflects the amountof resources needed foran
algorithm to run, the latter refers to the amount of information, i.e. samples, it
requires. The computational complexity can be further broken down into the
time complexity,which refers to thenumberof elementaryoperations required
fora specific task,and the space complexity,which reflects themaximalamount
of memory needed at any single time.

In the remaining of this section, we review two major applications of
sparsity and of low-rank, compressed sensing and principal component analysis

(PCA). In §1.21.2, we describe the common meeting point of the two, and thus,
delineate the topic addressed by this work. The chapter is concluded by §1.31.3,
where we lay out the central objectives and the structure of the rest of the
thesis.

1.1.1 Sparse approximation and compressed sensing

The classical result of ShannonShannon (19481948), which laid the foundations of infor-
mation theory, is the observation that continuous signals whose highest
frequency is upper bounded, can be exactly represented digitally using
finitely many bits if sampled at the Nyquist-Shannon rate: the number of
samples must be proportional to twice the highest frequency contained in
the signal.

Nowadays,we frequently encountersensors generatinghigh-dimensional
data that make achieving the Nyquist-Shannon rate difficult or entirely in-
feasible. Compressed sensing is a novel sampling paradigm, which goes
against the common practice in data acquisition, and states that it is possi-
ble to lower the sampling rate provided the signal contains redundancies.
While ShannonShannon (19481948) defined the signal complexity based on its maximal
frequency, in compressed sensing, the complexity is expressed through the
notion of sparsity, e.g. in the frequency domain of the signal.

Sparse datamodelswere being successfully implemented long before the
theory of compressed sensing, for example in the context of subset selection
(GarsideGarside, 19651965), seismology (Levy and FullagarLevy and Fullagar, 19811981; Santosa and SymesSantosa and Symes,
19861986), or medical ultrasound (Papoulis and ChamzasPapoulis and Chamzas, 19791979). In statistics,
sparse approximation was proposed for the overdetermined case of least
squares regression by TibshiraniTibshirani (19961996) to perform both variable selection
and regularization in order to enhance the prediction accuracy and in-
terpretability and is referred to as Least Absolute Shrinkage and Selection
(LASSO). In signal processing,Mallat and ZhangMallat and Zhang (19931993) defined the term dic-

tionary as anovercomplete setof atomswhose linearcombinations canbeused
to represent signals, but can cause difficulties in terms of non-uniqueness
of decomposition and overfitting. To resolve such issues, Mallat and ZhangMallat and Zhang
(19931993) also introduced theMatching Pursuit algorithmwhich finds the spars-
est representation through an iterative greedy process that selects the best
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matching elements in the dictionary to the given signal.
At its core, compressed sensing seeks a sparse solution to an underde-

termined system of linear equations

�G = 1, s.t. ‖G‖0 ≤ :, (1.1)

where � ∈ R?×= is the measurement operator with = > ?, 1 ∈ R? is the
vector of measurements, and G ∈ R= is the signal we wish to recover. The
‖G‖0 is the ℓ0-normwhich gives the number of non-zero entries of G. Solving
the minimum set cover problem can be reduced to that of finding a solution
to (1.11.1), and therefore, solving the problem in (1.11.1) is NP-hard in general
(Foucart and RauhutFoucart and Rauhut, 20132013, §2.3).

The seminal work of compressed sensing began with Candès and TaoCandès and Tao
(20062006), Candès et al.Candès et al. (2006a2006a) and DonohoDonoho (2006a2006a), who showed that the op-
timal B-sparse representation of a signal can be efficiently recovered via

min
G∈R=
‖G‖1 , s.t. 1 = �G, (1.2)

from ? measurements 1 ∈ R? taken by a linear subsampling operator � ∈
R?×= provided ? = O(B log =), and ‖G‖1 is the ℓ1-norm which is computed
as the sum of absolute values of G. This is referred to as Basis Pursuit and
can be solved by linear programming.

Candès and TaoCandès and Tao (20052005) and DonohoDonoho (2006b2006b) were able to lower the sub-
optimal log(=)-factor for matrices � ∈ R<×= sampled from the uniform
spherical ensemble and the random Gaussian ensemble

? = O
(
B log

(=
B

))
. (1.3)

This is a significant improvement because it asymptotically reduces to the
optimal rate ? = O (B) as

?

=
→ � ∈ (0, 1) and B

?
→ � ∈ (0, 1) as B, ?, = →∞, (1.4)

where the constant � is known as the undersampling ratio and corresponds to
the number of samples and the constant � is the sparsity ratio and expresses
how sparse is the signal.

An important part of the proof byCandès and TaoCandès and Tao (20052005) are the restricted
isometry constants (RICs)

(1 − Δ) ‖G‖2 ≤ ‖�G‖2 ≤ (1 + Δ) ‖G‖2 , (∀G) : ‖G‖0 ≤ B, (1.5)

which control the degree to which the linear mapping � ∈ R?×= acts as an
approximate isometry when restricted to the set of sparse vectors G. It can be
shown that the measurement operators obeying concentration of measure
inequalities have their RICs upper bounded (Baraniuk et al.Baraniuk et al., 20082008).

Candès and TaoCandès and Tao (20062006) proved that RICs of Gaussian matrices satisfy
Δ ≤ 0.6246, which in turn guarantees the ℓ0/ℓ1 equivalence in the sense that
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the solution of (1.21.2) solves also the sparsity constrained problem in (1.11.1).
Moreover, the recovery by ℓ1-norm minimisation can be also extended to
the case when there is an additive noise and/or model mismatch, i.e. the
signal is not exactly sparse (Candès et al.Candès et al., 2006a2006a). Another important result
is that Gaussian matrices can be multiplied with a fixed ortohogonal matrix
& ∈ R=×= and � ∈ R?×= with ? = O

(
B log

(
=
B

) )
, then �& ∈ R?×= will

also have a sufficiently small RICs (Foucart and RauhutFoucart and Rauhut, 20132013). This greatly
generalises the results and enables recovery of signals that are sparse in any
orthonormal basis &.

The successes described above motivated the research into the limits of
ℓ1-norm minimisation. DonohoDonoho (2006c2006c) gave a lower bound on the sparsity
stating that the ℓ0/ℓ1 equivalence holds for � sampled uniformly from the
Grassmannian manifold when � < �((Δ)with probability 1 − >(1) and � <

�, (Δ)with overwhelming probability. Itwas provedbyDonoho and TannerDonoho and Tanner
(2009b2009b) that the bounds are precise, i.e. having � > �((Δ) or � > �, (Δ) im-
plies the ℓ0/ℓ1 equivalence fails to hold. As a consequence, there is an abrupt
phase transition in which for a given subsampling ratio �, the probabilty
of a successfull recovery drastically changes from one to zero as � grows
beyond �, (�) or �((�). Donoho and TannerDonoho and Tanner (2009a2009a) conjectured that a simi-
larly abrupt phase transition in the ℓ1-norm minimisation happens also for
measurement operators sampled from other random matrix ensembles.

There is a wide range of iterative algorithms for solving compressed sens-
ing problems which we review in §4.2.14.2.1. For a comprehensive overview of
compressedsensing,see (Eldar and KutyniokEldar and Kutyniok,20122012) and(Foucart and RauhutFoucart and Rauhut,
20132013).

1.1.2 Low-rank approximation, PCA, and its extensions

Large datasets are becoming progressively common and are often hard to
interpret. In order to be able to analyse such data, methods are needed to
reduce their dimensionality in an interpretable way. There now exist many
techniques for the task, but principal component analysis (PCA) is one of
the oldest and most widely used (Goodall and JolliffeGoodall and Jolliffe, 19881988). The core idea
of PCA is to reduce the dimensionality of a dataset, while preserving the
maximal variance, i.e. statistical information, as possible.

The earliest work on PCA dates to PearsonPearson (19011901) and HotellingHotelling (19331933),
but its widespread use began only with the advent of computing. Compu-
tation of PCA is equivalent to finding the closest rank-A approximation to a
covariance matrix " of mean centered data in the Frobenius norm

min
-∈R=×=

‖- −"‖� , s.t. rank(-) ≤ A. (1.6)

For an early history of SVD
computation, see (StewartStewart,
19931993).

The minimisation in (1.61.6) has a closed-form solution that is by Eckart-
Young-Mirsky theorem expressed through truncating the singular value de-
composition (SVD). Thedevelopmentof SVDalgorithmsbyGolub and KahanGolub and Kahan
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(19651965) allowedPCAto come intopopularity. Golub and ReinschGolub and Reinsch (19701970) subse-
quently formulated the algorithm that have been the standard for computing
SVD until now.

The standard algorithm for computing SVD has cubic time complexity,
which is sufficient for moderately sized covariance matrices, but becomes
prohibitively costly for analysing large datasets. Recent advances in ran-
domised numerical methods led to fast sketching algorithms suitable for
large problem sizes with good convergence properties when there exists
a close enough low-rank approximation (Halko et al.Halko et al., 20112011; Drineas et al.Drineas et al.,
20062006; WoodruffWoodruff, 20142014). Randomised sketching methods compute only the
:-leading singular values and their singular vectors with time complexity
O

(
=2 log(:) + =:2) .
Modern datasets are not only big, but often also messy; significant parts

of the data can be corrupted or evenmissing. To account for this, over the last
decade PCA has been extended to allow for missing data—matrix completion,
subsampled measurement of data—matrix sensing, or data with few entries
grossly corrupted or inconsistent with the low-rank model—Robust PCA.

Matrix completion can be equated with computing PCA with missing Missing data:
Matrix completionentries. It is the task of filling in the missing entries of a partially observed

low-rank matrix

%Ω(-) = 1, s.t. rank(-) ≤ A, (1.7)

where 1 ∈ R? is a vector of ? observed entries and%Ω : R=×= → R? is an entry-
wise subsampling operator that keeps entries of - at indices Ω ⊂ [=] × [=].

This problem arises in many applications including collaborative filter-
ing in recommendersystems, e.g. forNetflixprize orMovieLens (Koren et al.Koren et al.,
20092009), trafficsensing (Du et al.Du et al.,20152015),multispectral imaging (Antonucci et al.Antonucci et al.,
20192019), integrated radar and communications (Liu et al.Liu et al., 20132013), multi-task
learning (Obozinski et al.Obozinski et al., 20102010; Argyriou et al.Argyriou et al., 20082008), and localization of
Internet of Things (IoT) devices (Nguyen et al.Nguyen et al., 20192019).

Although the rank minimisation is NP-hard in general (Harvey et al.Harvey et al.,
20062006; Hardt et al.Hardt et al., 20142014), Candès and RechtCandès and Recht (20092009) were the first to show
that, under certain conditions, the entries of - can be filled in exactly by
solving an optimisiation problem that is a convex relaxation

min
-∈R=×=

‖-‖∗ , s.t. %Ω(-) = 1, (1.8)

where ‖-‖∗ is the sum of singular values of -, often referred to as the
nuclear norm or the Schatten-1 norm. The sufficient conditions on the exact
recovery by Candès and RechtCandès and Recht (20092009) are that the singular vectors of - are
sufficiently spread out through the notion of incoherence, the indices of the Incoherence, regularisation

and assumptions on matrix
recovery are discussed in
§2.22.2.

observed entries are chosen uniformly at random, and ? ≥ O
(
=1.2A log (=)

)
.

This result has been improved upon by Candès and TaoCandès and Tao (20102010) by lowering
the sample complexity bound to O

(
=A log (=)

)
which is the optimal order

of the sample complexity times a logarithmic factor.
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The convex relaxation can be readily solved by semidefinite programming

(SDP), but has the time complexity O(=6) (NesterovNesterov, 20042004), making it infea-
sible even for moderately large matrices. This led to the development of a
range of gradient descent optimisation techniques that have lower time com-
plexity [see the discussion in §4.2.24.2.2] and non-convex optimisation methods
that solve

min
-∈R=×=

‖%Ω(-) − 1‖� , s.t. rank(-) ≤ A. (1.9)

Matrix sensing is a generalisation of the matrix completion in the sense Subsampled data:
Matrix sensingthat the subsampling is applied throughageneral linearmapA : R<×= → R?

and therefore it is not limited to an entry-wise sampling. Recht et al.Recht et al. (20102010)
proved an analogous result to compressed sensing, that a low-rank matrix
-0 can be recovered by a convex relaxation

min
-∈R<×=

‖-‖∗ , s.t. A(-) = 1, (1.10)

provided A(·) has its RICs in respect to the set of low-rank matrices suffi-
ciently bounded. Noteable difference between provable recovery in matrix
sensing and matrix completion is that the former does not require the sin-
gular vectors to be sufficiently spread out in terms of coherence.

Robust PCA is a related problem that arises when we are presented Grossly corrupted data:
Robust PCAa covariance matrix with some of its entries corrupted, but without the

knowledge of their locations. The goal is to find an additive decomposition
of a covariance matrix " ∈ R=×= such that

" = ! + (, s.t. rank(!) ≤ A, ‖(‖0 ≤ B. (1.11)

Allowing the addition of a sparse matrix to the low-rank matrix can be
viewed as modelling globally correlated structure in the low-rank com-
ponent while allowing local inconsistencies, innovations, or corruptions.
Exemplar applications of this model include image restoration (Gu et al.Gu et al.,
20142014), hyperspectral image denoising (Gogna et al.Gogna et al., 20142014; Chen et al.Chen et al., 20172017;
Wei et al.Wei et al., 20152015), face detection (Luan et al.Luan et al., 20142014; Wright et al.Wright et al., 2009a2009a), accel-
eration of dynamic MRI data acquisition (Otazo et al.Otazo et al., 20152015; Xu et al.Xu et al., 20172017),
analysis of medical imagery (Baete et al.Baete et al., 20182018; Gao et al.Gao et al., 20112011), separation
of moving objects in an otherwise static scene (Bouwmans et al.Bouwmans et al., 20172017), and
target detection (Oreifej et al.Oreifej et al., 20132013; Sabushimike et al.Sabushimike et al., 20162016) .

Motivated by the successes of ℓ1 and ℓ∗ norm relaxations Candès et al.Candès et al.
(20112011) and Chandrasekaran et al.Chandrasekaran et al. (20112011) independently showed that the con-
vex relaxation

min
!,(∈R<×=

‖!‖∗ + �‖(‖1 , s.t. ! + ( = ", (1.12)

recovers ! and ( under two assumptions: one on the low-rank component !
and one on the sparse component (. The first one, assumed by both works
alike, is the same assumption as in matrix completion, that the singular
vectors of ! cannot be concentrated only in few of its entries, but must be
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spread out by being sufficiently incoherent. The other assumption, on the
sparse component, differs in both works. Candès et al.Candès et al. (20112011) assumes that
the support set of the sparse component is drawn uniformly at random from
all support sets with B entries, while Chandrasekaran et al.Chandrasekaran et al. (20112011) works
with a deterministic model and posed that there is an upper bound on the
fraction of corrupted entries in each column.

Again, (1.121.12) can be solved by SDP, but the computation is prohibitively
expensive. A number of gradient descent algorithms have been developed
for either the convex case or to directly solve Robust PCA in its non-convex
formulation

min
!,(∈R<×=

‖! + ( −"‖� , s.t. rank(!) ≤ A, ‖(‖0 ≤ B. (1.13)

For a review of Robust PCA algorithms see §4.2.34.2.3.

1.2 problem description and scope

The main object of interest of this thesis is the additive combination of
low-rank and sparse matrices. That is, we work with matrices " ∈ R<×=
expressible as

" = ! + (, (1.14)

where the low-rank component ! is of rank at most A ∈ N and the sparse
component ( has at most B ∈ N non-zero entries.

1.2.1 Well-posedness of optimisation over low-rank plus sparse matrices

The set formed by low-rank plus sparse matrices is captured in the following
definition.

Definition 1.1 (The set of low-rank plus sparse matrices). Denote the set of

< × = real matrices that are the sum of a rank A matrix and a B sparse matrix as

LS<,=(A, B) =
{
! + ( ∈ R<×= : rank(!) ≤ A, ‖(‖0 ≤ B

}
. (1.15)

The LS<,=(A, B) set plays an important role in Robust PCA where it is
the set of viable decompositions in (1.111.11) and the set of feasible solutions
of the non-convex optimisation in (1.121.12). It can be also seen as a generali-
sation of the feasible sets for non-convex optimisation in compressed sens-
ing, when LS<,=(0, B), and matrix completion/sensing, when LS<,=(A, 0).

Despite the importance of the low-rank plus sparsematrix set, some of its
properties have not been investigated yet, but have been implicitly assumed
in the literature. The study of the rank function in respect to sparsity has been
studied from a theoretical standpoint in the complexity theory by ValiantValiant
(19771977) through the notion of matrix rigidity; see §2.42.4, page 1919. Most of the
theory of Robust PCA focuses on convergence analysis of algorithms and
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identifiability results, which by controlling the correlation of the low-rank
and the sparse component guarantee that there exists a unique solution.

On the other hand, the existence of a solution in matrix completion and
Robust PCA is implicitly assumed. This is a reasonable assumption since
both, the set of sparse vectors and the set of low-rank matrices, are closed
sets, and if the objective function is bounded, a global minimum must exist
and can be attained. Indeed, since a solution is guaranteed to exists for both
PCA and compressed sensing, one would also expect the same to hold in
the case of matrix completion and Robust PCA.

However, LS<,=(A, B) is constructed as the Minkowski sum of the low-
rank set and the sparse set, and therefore it is not guaranteed to be closed,
thus possibly jeopardising the existence of a solution and the convergence
analysis of iterative algorithms. A sufficient condition for the low-rank plus
sparse matrix set to be closed is that the norm of one of the components is
proportionallyupperboundedby the normof thematrix sum; see Lemma2.82.8
on page 3333. This motivates the following definition in which the low-rank
component has an additional constraint on its Frobenius norm.

Definition 1.2 (The set of bounded low-rank plus sparse matrices). Denote

the set of < × = real matrices that are the sum of a rank-A matrix and a sparsity-B

matrix as

LS�<,=(A, B) =
{
- = ! + ( ∈ R<×= : rank(!) ≤ A, ‖(‖0 ≤ B, ‖!‖� ≤ � ‖-‖�

}
,

(1.16)
where the rank-A matrix has its Frobenius norm upper bounded by � times the

Frobenius norm of the matrix sum.

The advantage of the set LS�<,=(A, B) compared to the set LS<,=(A, B) lies
in the fact that the former is guaranteed to be closed, the optimisation over
it is well-posed, and if normalized, it has a finite covering number. Due to
the upper bound on the Frobenius norm of the rank-A component being
proportional to the Frobenius norm of the matrix sum, the set also remains
conic.

Nevertheless, the set LS�<,=(A, B) in Definition 1.21.2 has a critical limitation
hindering the analysis of optimisation algorithms: it is difficult to guarantee,
in general, that thematrix sum of two low-rank plus sparsematrices-1 , -2 ∈
LS�<,=(A, B) lies in the set LS�′<,=(2A, 2B) for some �′ > 0, see the discussion in
§2.72.7.

The lack of additivity is overcome by the notion of incoherence, discussed
in detail in §2.22.2, which controls the correlation between the singular vectors
of the low-rank component and the canonical basis.

Definition 1.3 (The set of incoherent low-rank plus sparse matrices). Denote

the set of < × = real matrices that are the sum of a rank-A matrix and a sparsity-B

§1.2 · problem description and scope 9



matrix as

LS<,=(A, B, �) =

! + ( ∈ R
<×= :

rank(!) ≤ A, ‖(‖0 ≤ B
max8∈{1,...,<} ‖*) 48 ‖2 ≤

√
�A
<

max8∈{1,...,=} ‖+) 58 ‖2 ≤
√

�A
=

 , (1.17)

where * ∈ R<×< , + ∈ R=×= are the left and the right singular vectors of !

respectively, 48 ∈ R< , 59 ∈ R= are the canonical basis vectors, and � ∈
[
1,
√
<=/A

]
controls the incoherence of !.

1.2.2 Sensing of low-rank plus sparse matrices

While Robust PCAdealswith grossly corrupted data,matrix completion and
matrix sensing recover a low-rank matrix from incomplete and subsampled
data, respectively. In the pastdecade,RobustPCA,matrix sensing,andmatrix
completion have been extensively studied and successfully implemented in
a wide range of engineering problems.

However, much less focus has been given to the combined case, i.e. the
recovery of a grossly corrupted low-rankmatrix in an information restrained
setting. Mathematically speaking, the goal is to recover an unknown matrix
-0 ∈ LS<,=(A, B, �), possibly in the form of two components -0 = !0 + (0,
from a vector of ? subsampled measurements 1 = A(-0)made by a linear
subsampling operatorA : R<×= → R? .

The task is a mixture of compressed sensing and low-rank matrix sensing

with the additional challenge of distinguishing between the low-rank and
the sparse component which can become correlated.

This problem has been investigated by (Waters et al.Waters et al., 20112011) who design
an iterative algorithm called SpaRCS that is based on the widely popular
CoSaMP (Needell and TroppNeedell and Tropp, 20092009) and ADMiRA (Lee and BreslerLee and Bresler, 20102010)
designed for compressed sensing and matrix sensing respectively and solve
the following non-convex optimisation problem

min
-∈R<×=

‖A(-) − 1‖2 , s.t. - ∈ LS<,=(A, B). (1.18)

WhileWaters et al.Waters et al. (20112011) prove the convergence of theirmethod, the analysis
is based on the assumption thatA(·) has its RICs bounded in respect to the
low-rank plus sparse matrix set LS<,=(A, B), which has not been proved yet
and has remained an open question.

The derivation of RICs for the set of low-rank matrices by Recht et al.Recht et al.
(20102010) is based on an �-covering argument of the set and was inspired by
the analogous proof made by Baraniuk et al.Baraniuk et al. (20082008) for the set of sparse
vectors. The complication with RICs for the low-rank plus sparse matrix set
LS<,=(A, B) comes from the fact that the set does not need to be closed and
therefore might not have an �-covering.

Another unresolved question is if, analogous to compressed sensing and
matrix sensing, it is possible to recover a low-rank plus sparse matrix by

§1.2 · problem description and scope 10
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lemwhich is considered in this
work is annotated in red.

solving the convex relaxation

min
-∈R<×=

‖!‖∗ + � ‖(‖1 , s.t. A(! + () = 1, (1.19)

which is solved by semidefinite programming techniques.
The main focus of this work is the study of low-rank plus sparse matrix

recovery and the corresponding optimisation problems formulated in (1.181.18)
and (1.191.19). The surrounding context of the work presented here is best
explained by the diagram shown in Figure 1.11.1.

1.3 objectives and structure of the thesis

In the previous section, we highlighted several unresolved questions about
the well-posedness of low-rank plus sparse matrix optimisation and the task
of recovering such matrices. This thesis is dedicated to addressing these
issues. We shall systematically study the low-rank plus sparse sets and the
optimisation problems defined on them. The work can be divided between
the theoretical contributions (Chapters 22–44) and the practical contributions
on multispectral imaging (Chapter 55).

In Chapter 22, we discuss the well-posedness and regularisation of low- Chapter 22: Matrix rigidity & the

ill-posedness of matrix recoveryrank matrix recovery problems. We begin by reviewing the list of common
assumptions posed on Robust PCA and matrix completion in the literature.
By constructing a simple 3 × 3 matrix, we demonstrate that there is another
source of ill-posedness in Robust PCA and matrix completion that is not
considered by the existing assumptions. Optimisation related to Robust
PCA and matrix completion can fail to have any solutions due to the set of
low-rank plus sparse matrices not being closed, which in turn is equivalent
to the notion of the matrix rigidity function not being lower semicontinuous.
By constructing infinite families of matrices, we derive bounds = ≥ (A +
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1)(B + 2) and = ≥ (A + 2)3/2B1/2 on the matrix size, rank and sparsity for
which the set of low-rank plus sparse matrices LS=,=(A, B) is not closed,
see Theorem 2.12.1. We also demonstrate numerically that a wide range of
nonconvex algorithms for both Robust PCA and matrix completion have
diverging components when applied to the specifically constructedmatrices.
We conjecture the best attainable bound is achieved at = ≥ A +

√
B + 1 using

bounds onmaximummatrix rigidity, see Conjecture 11 in §2.5.22.5.2. The problem
is resolved by restraining the Frobenius norm of the low-rank component,
thus closing the set, and motivating the set of bounded low-rank plus sparse
matrices LS�<,=(A, B) in Definition 1.21.2. However, the sum of two matrices
in the set LS�<,=(A, B) does not need to be a sufficiently bounded low-rank
plus sparse matrix in general. We conclude the chapter by constraining the
incoherence of the low-rank component leading to the notion of the set
of incoherent low-rank plus sparse matrices LS<,=(A, B, �) in Definition 1.31.3,
which satisfies the additive property [Lemma 2.92.9] and is also a subset of
LS�<,=(A, B)when � <

√
<=

/ (
A
√
B
)
[Lemma 2.12.1, Lemma 2.102.10].

By closing the set we are able to show that random linear maps obeying Chapter 33: Restricted isome-

try constants for low-rank plus

sparse matrix set

certain concentration of measure inequalities act as approximate isometries
when restricted to the set of low-rank plus sparse matrices. The founda-
tional analytical tool for our results are the restricted isometry constants (RICs)
for LS<,=(A, B, �), which as for other RICs (Baraniuk et al.Baraniuk et al., 20082008; Recht et al.Recht et al.,
20102010), follows from balancing the covering number for the set LS<,=(A, B, �)
and the measurement operator being a near isometry as described in Defini-
tion 3.23.2. Random linearmapswhichhave sufficient concentration ofmeasure
phenomenon can overcome the dimensionality of LS<,=(A, B, �) to achieve
RICs which are bounded by a fixed value independent of dimension size
provided the number of measurements is proportional to the number of
degrees of freedom of a rank-A plus sparsity-B matrix:

? ≥ O
(
(A(< + = − A) + B) log

((
1 − �2 A

2B

<=

)−1/2
<=

B

))
, (1.20)

provided� <
√
<=/(A

√
B), see Theorem3.13.1. Examples of random linearmaps

which satisfy these bounds include random Gaussian matrices, random
Bernoulli matrices, and the Fast Johnson-Lindenstrauss transform.

We devise several computationally tractable methods for the recovery of Chapter 44: Algorithms for low-

rank plus sparse matrix sensingincoherent low-rank plus sparse matrices from subsampled measurements.
We show in Theorem 4.14.1 that an upper bound on the RICs of the measure-
ment operator implies uniqueness of the solution to the recovery problem.
Additionally, we prove that semidefinite programming that solves the opti-
misation in (1.191.19) [Theorem 4.24.2] and two gradient descent algorithms that
solve (1.181.18), NIHT andNAHT [Theorem 4.34.3 & Theorem 4.44.4], converge to the
subsampled matrix provided the RICs of the measurement operator are suf-
ficiently small. In addition, the convex relaxation and NAHT also provably
solve Robust PCA with the asymptotically optimal number of corruptions
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B = O
(
<=/

(
�2A2) ) when the sensing operator is the identity, and therefore

an isometry. We perform numerical experiments illustrating these results
for synthetic problems, dynamic-foreground/static-background separation,
and multispectral imaging.

Finally, we apply low-rank matrix completion and compressed sensing Chapter 55: Low-rank models for

multispectral imagingin the context of reconstruction of multispectral imagery. In particular, we
investigate a reconstruction problem that arises in the acquisition of mul-
tispectral images by snapshot mosaic cameras. We show that the missing
entries in the images can be accurately imputed despite the severe snapshot
undersampling using non-convex techniques from sparse approximation
andmatrix completion initialisedwith classical demosaicing algorithms. We
observe the peak signal-to-noise ratio can typically be improved by 2 dB to
5 dB over the current state-of-the-art methods when simulating a 16-band
mosaic sensor measuring both high and low altitude urban and rural scenes
as well as ground-based scenes.
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2matrix rigidity &

the ill-posedness
of matrix recovery

synopsis

In this chapter, we show that the set of matrices, which can be
expressed as the sum of a low-rank and a sparse matrix, is not
closed for a range of ranks, sparsities, and matrix dimensions;
see Theorem 2.12.1. Moreover there are a number of algorithms
that when given a matrix of a specific form and with constraints
on the rank and sparsity, seek such a decomposition where the
constituents diverge while at the same time the sum of the matri-
ces converges to a matrix outside of the feasible set. We thereby
highlight a previously unknown issue practitioners might expe-
rience using these techniques. The situation is analogous to the
lack of closedness for Tensor CP decomposition rank (HitchcockHitchcock,
19281928, 19271927) which motivates the notions of multilinear rank ap-
proximation (De Lathauwer et al.De Lathauwer et al., 20002000).

2.1 introduction

Many problems in data science take the form of an inverse problem – a process
of calculating from a set of observations the causal factors that produce
them. Typically, there might be a limited number of observations and many
possible ways of explaining them. Take as an example the problem of
imputing missing entries of a matrix. Clearly, without further constraints,
it is impossible to determine the missing entries of a matrix. There are too
many possible solutions and the problem is not well defined.

In mathematics, the term well-posed problem comes from a definition
by HadamardHadamard (19021902). According to Hadamard, a well-posed mathematical
model of a physical phenomenon should posses three properties
(i) a solution exists,
(ii) the solution is unique,
(iii) the solution depends continuously on the initial conditions.
These are referred to as existence, uniqueness, and stability. Problems that do
not satisfy these conditions are said to be ill-posed.
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In this chapter we will observe that inverse problems formulated as a
recovery of an < × = matrix with restricted rank, sparsity, or a combination
of the two, can encounter several types of the aforementioned sources of
ill-posedness.

At first sight, inverse matrix recovery problems, such as Robust PCA and Adding rank and sparsity reg-
ularisation restricts the set of
suitable solutions.

matrix completion, might appear as impossible tasks. In both cases, the lim-
ited number of data observations does not uniquely specify a solution to the
underlying model—the system is underdetermined. In matrix completion,
this is due to observing only ? measurements while we wish to recover a
matrix with <= entries, with ? < <=. In Robust PCA, we are given a matrix
with <= entries, and the goal is to decompose it into two matrices that
have together 2<= entries. By posing an additional regularisation condition
on the solution in the form of a rank or a sparsity constraint we lower the
number of degrees of freedom of the model such that it becomes smaller in
comparison to the number of observations.

However, in general, adding the regularisation does not guarantee well- Matrices can be both low-
rank and sparse leading to
multiple solutions of Ro-
bust PCA and matrix comple-
tion. Low-coherence ensures
uniqueness of a solution, see
§2.22.2.

posedness of Robust PCA and matrix completion. This is because some
matrices can be both low-rank and sparse. Such matrices have a non-unique
low-rank plus sparse decompositions and an entry-wise subsampling %Ω
canmiss important information about them. This is a well-known ambiguity
in matrix completion and Robust PCA that arises when a low-rank matrix is
highly correlated with a sparse matrix. A crucial assumption in these cases
is the incoherence that ensures uniqueness of the solution.

The main result of this chapter highlights the presence of a more funda- The set of low-rank plus
sparse matrices is not closed,
and such there can be an is-
sue with existence of a solu-
tion, see §2.52.5.

mental difficulty that leads to ill-posedness of Robust PCA and matrix
completion in terms of existence. There are matrices for which Robust
PCA and matrix completion have no solution in that iterative algorithms
that attempt to solve them can generate sequences of iterates (!C , (C) for
which limC→∞ ‖" − (!C + (C)‖� = 0 and !C + (C ∈ LS<,=(A, B) for all C, but
"∗ = limC→∞ !C + (C ∉ LS<,=(A, B). This is not because of the ambiguity
between possible solutions or lack of information about the matrix, but in-
stead because LS<,=(A, B) is not a closed set. Moreover, this is not an isolated
phenomenon, as sequences of LS<,=(A, B)matrices converging outside of the
set can be constructed for a wide range of ranks, sparsities and matrix sizes.

The structure of the chapter is as follows. We first define in §2.22.2 the
incoherence property of matrices – a standard assumption for a provable
solution of Robust PCA and matrix completion. In §2.32.3, we demonstrate a
simple example of a matrix for which Robust PCA is ill-posed and which is
not covered by the incoherence condition. The following §2.42.4 introduces the
notion of matrix rigidity function, which is the central theoretical object of
the chapter, and shows how it relates to the low-rank plus sparse matrix sets
not being closed. In §2.52.5, we generalise the simple example to matrices of
arbitrary sizes and a range of ranks and sparsities. In §2.62.6 shows that many
non-convex algorithms follow the diverging path when given specifically
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constructedmatrices. Finally,we discuss in §2.72.7 how the problem of the set of
low-rank plus sparse matrices not being closed can be resolved by imposing
an upper bound on the norm of one of the components, or alternatively, by
controlling the coherence of the low-rank component.

2.2 incoherence and other matrix recovery
assumptions

Adding an additional regularisation constraint in the form of a low rank
or a low sparsity lowers the number of degrees of freedom of the underly-
ing model. However, having a model with fewer degrees of freedom than
the number of measurements still does not guarantee the well-posedness
of Robust PCA and matrix completion. This is because matrices which
are both low-rank and sparse can have non-unique low-rank plus sparse
decompositions and thus violate the uniqueness criterion.

Trivial examples of matrices with non-unique low-rank plus sparse de-
compositions in LS<,=(A, B) include any matrix with two nonzero entries
in differing rows and columns as they are in LS<,=(A, B) for any A and B

such that A + B = 2 with the entries of the matrix assigned to the sparse or
low-rank components selected arbitrarily. Moreover, matrix completion of
a low-rank matrix is impossible for sampling patterns %Ω that are disjoint
from the support of the matrix", which can be likely for matrices that have
few nonzeros.

Both of the aforementioned problems are controlled by the incoher-

ence parameter which ensures the singular vectors of the low-rank ma-
trix have most entries being nonzero and can be used to ensure recovery
guarantees of matrix completion (Candès and TaoCandès and Tao, 20102010) and Robust PCA
(Chandrasekaran et al.Chandrasekaran et al., 20112011; Candès et al.Candès et al., 20112011).

Definition 2.1 (Incoherence � of the low-rank component !). For a matrix

! ∈ R<×= define its incoherence � as the smallest � ∈
[
1,
√
<=/A

]
such that

max
8∈{1,...,A}

*) 48


2 ≤
√

�A

<
, max

8∈{1,...,A}

+) 48


2 ≤
√

�A

=
, (2.1)

where ! = *Σ+)
is the singular value decomposition of the rank A component !

of size < × =. Matrices with � = 1 are called maximally incoherent and matrices

with � =
√
<=/A are called maximally coherent.

The incoherence condition for small values of � ensures that left and
right singular vectors are well spread out and not sparse. In the case of
matrix completion, this prevents from the subsampling operator %Ω missing
important information about the singular vectors. For Robust PCA, a low
value of � of the low-rank component prevents ambiguity of the low-rank
and the sparse component.
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The following lemma reveals the usefulness of incoherence in controlling
the correlation between incoherent low-rank and sparse matrices.

Lemma 2.1 (The rank-sparsity correlation bound). Let !, ( ∈ R<×= and

! = *Σ+)
be the singular value decomposition of !, then

|〈!, (〉| ≤
abs (*) abs

(
+)

)
∞
�max (!) ‖(‖1 , (2.2)

where abs(·) denotes the entry-wise absolute value of a matrix, the matrix norms

are vectorised entry-wise ℓ?-norms, and �max (!) is the largest singular value of !.
As a consequence, if ! is a rank-A matrix that is �-incoherent and ( is an

B-sparse matrix

|〈!, (〉| ≤ �
A
√
B

√
<=
‖!‖� ‖(‖� , (2.3)

where we define �
�
A,B := � A

√
B√

<=
to be the (A, B, �)-rank-sparsity correlation coefficient.

The proof is presented on page 3838 as part of §2.92.9.

Remark 2.1. Note that the above Lemma 2.12.1 is informative only when the rank-

sparsity correlation coefficient �
�
A,B < 1, i.e. when � <

√
<=

A
√
B
. As a consequence, we

will derive asymptotically optimal low-rank plus sparse matrix recovery rates in

terms of incoherence in algorithms presented in Chapter 44.

Another assumption often made in Robust PCA aims to prevent the
case of all of the nonzero entries of S occuring in a single column or in few
columns. Suppose for example, that one column of ( is the opposite of that
of !, and that all the other columns of ( are zero. Clearly, we will not be able
to recover ! and ( by any method as" = ! + ( would have a column space
equal to, or included in the column space of !. To avoid these situations, we
have to pose an additional assumption on the support set of (.

The assumption on the support set given by Chandrasekaran et al.Chandrasekaran et al. (20112011)
is deterministic and upper bounds the number of corruptions in columns
and rows of (.

Definition 2.2 (Sparsity ratio of the sparse component (). The support set of
the sparse corruptions matrix ( must be sufficiently spread out. We require that for

( ∈ R<×= , there exists  ∈ [0, 1), such that ( ∈ (, where

( =
{
� ∈ R<×= : ‖�) 48 ‖0 ≤ =, ‖�4 9 ‖0 ≤ <, ∀(8 , 9) ∈ [<] × [=]

}
. (2.4)

A consequence of this assumption is also an upper bound on the sparsity ‖(‖0 ≤
2<=. We refer to the parameter  as the sparsity ratio of matrix (.

A stochastic variant of the requirement is used by Candès et al.Candès et al. (20112011),
where it is only required that the support set of ( is uniformly distributed
among all sets of cardinality |supp(()| = 2<=. The deterministic assump-
tion of Chandrasekaran et al.Chandrasekaran et al. (20112011) is more prevalent in the Robust PCA
literature.
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Now that we reviewed the main assumptions posed on Robust PCA
and matrix completion for ensuring uniqueness of the solution, we are pre-
pared to investigate another source of ill-posedness: Robust PCA andmatrix
completion can cease to have any solution at all.

2.3 simple example of the lack of existence

Consider solving for the optimal LS3,3(1, 1) approximation to the following
3 × 3 matrix, which is a special case of construction given by Kumar et al.Kumar et al.
(20142014) in the context of the matrix rigidity function not being lower semicon-
tinuous.

min
-∈R3×3

‖- −"‖� , s.t. - ∈ LS3,3(1, 1),

" =
©«
0 1 1
1 0 0
1 0 0

ª®®¬
(2.5)

We have the following sequence of matrices -�

Recall Definition 1.11.1:

LS<,=(A, B) =
- = ! + ( :
rank(!) ≤ A,
‖(‖0 ≤ B


-� =

©«
0 1 1
1 � �

1 � �

ª®®¬ ∈ LS3,3(1, 1)

=
©«
1/� 1 1
1 � �

1 � �

ª®®¬︸         ︷︷         ︸
!�

+
©«
−1/� 0 0

0 0 0
0 0 0

ª®®¬︸           ︷︷           ︸
(�

,

which can decrease the objective function ‖-� −"‖� = 2� to zero as �→ 0,
but at the cost of the constituents !� and (� diverging with unbounded
energy. Moreover, the sequence which minimizes the error converges to a
matrix" lying outside of the feasible setLS3,3(1, 1) and is in the setLS3,3(1, 2)
instead. By the fact that " ∉ LS3,3(1, 1), we have that zero objective value
cannot be attained and therefore one cannot construct sequences that yield
the desired solution. Therefore Robust PCA as posed in (2.52.5) does not have
a global minimum. As the objective function is decreased towards zero, the

Sequence -� converges out-
side of the feasible set
LS3,3(1, 1).

energy of both the low-rank and the sparse components diverge to infinity.
Likewise, we could consider an instance of the matrix completion prob-

lem in (1.91.9) in which the top left entry of" is missing and a rank 1 approxi-
mation is sought. We see that a rank 1 solution cannot be obtained as there
does not exist a choice for the top left entry that would reduce the rank of
" to 1. However, the sequence !� decreases the objective arbitrarily close to
zero while the energy of the iterates grows without bounds, ‖!�‖� →∞.

The underlying mathematical issue is that the matrix rigidity function
is not lower semicontinuous as we discuss in the following section.
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2.4 matrix rigidity is not
lower-semicontinuous

Robust PCA is closely related to the notion of the matrix rigidity function
which was originally introduced in complexity theory by ValiantValiant (19771977) and
refers to theminimum number of entries of" thatmust be changed in order
to reduce it to rank A or lower.

Note that the original defini-
tion by ValiantValiant (19771977) works
with rank(" + () ≤ A. Here,
we change the sign to be
consistent with Robust PCA
notation, " = ! + ( and
rank(!) ≤ A.

Rig(", A) = min
(∈R<×=

‖(‖0 , s.t. rank(" − () ≤ A.

Lower bounds on matrix rigidity are motivated by their applications in
complexity theory. Specifically, ValiantValiant (19771977) showed that lower bounds
of the form Rig(�, �=) = =1+� for some constants �, � > 0 imply that the
linear transform defined by � cannot be computed by an arithmetic circuit
with complexity of order O

(
= log(=)

)
. Using the terminology of low-rank

plus sparse matrix sets: if a matrix can not be well expressed as a sum of a
matrix with sufficiently low rank and a sufficiently sparse matrix, there does
not exist an arithmetic circuit that would perform multiplication with the
matrix in super-linear or lower complexity. Numerous other applications of
lower bounds on rigidity have been found in circuit complexity, communica-
tion complexity, and learning complexity (Forster et al.Forster et al., 20012001; LokamLokam, 20012001;
Linial and ShraibmanLinial and Shraibman, 20092009), for a comprehensive survey on applications of
matrix rigidity see (CodenottiCodenotti, 20002000).

Matrix rigidity is upper bounded for any " ∈ R=×= and rank A as

Rig(", A) ≤ (= − A)2. (2.6)

due to elementary matrix properties. Matrices which achieve this upper
bound for every A are referred to as maximally rigid. Despite the fact that
ValiantValiant (19771977) showed that most matrices satisfy such a strong condition,
that is they are maximally rigid, it was only recently proved by (Kumar et al.Kumar et al.,
20142014, Theorem 7) how to construct them explicitly. Explicit construction
of maximally rigid matrices was a long-standing open question originally
posed by ValiantValiant (19771977).

Moreover, Kumar et al.Kumar et al. (20142014) also provide an example of the rigidity
function not being lower-semicontinuous, which intuitively means that for
any point, there exists a small neighbourhood in which the function is
nondecreasing.

Definition 2.3 (Semicontinuity). Let . be a topological space. A function ) :
. → / is (lower) semicontinuous if, for each 2 ∈ /, the set

{
H ∈ . : )(H) ≤ 2

}
is

a closed subset of ., that is, for each H, there is a neighborhood* of H such that

∀H′ ∈ *, )(H′) ≥ )(H). (2.7)

For example, the rank and the sparsity of a matrix, are lower continuous
functions on the space of all < × = matrices. However, the matrix rigidity

For ease of reference:

" =
©«
0 1 1
1 0 0
1 0 0

ª®®¬

-� =
©«
0 1 1
1 � �

1 � �

ª®®¬
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function does not possess this desirable property. Indeed, making an arbi-
trarily small perturbation does not suffice for a decrease of rank or sparsity.
In order to see the matrix rigidity function is not lower-semicontinuous,
revisit the simple 3 × 3 matrix " defined in (2.52.5) for which Rig(", 1) = 2.
For any neighborhood* , there exists � > 0 small enough such that -� ∈ *
and Rig(-� , 1) = 1 < Rig(", 1). We see that matrix rigidity is indeed not
lower-semicontinuous and that this in turn implies the set LS3,3(1, 1) is not
closed.

Both rank and sparsity are lower-semicontinuous, and as such the opti-
misation problems over the sets of low-rank and sparse matrices are well-
defined. On the other hand, matrix rigidity and CP-rank are not lower-
semicontinuous, therefore the corresponding optimisation problems do not
need to be well defined (Tanner et al.Tanner et al., 20192019; de Silva and Limde Silva and Lim, 20082008).

With the formal definitions of the matrix rigidity and the semicontinuity
in place, we are now ready to present the main mathematical result of the
chapter. We show that the above simple example of a 3 × 3 matrix can be
generalized for a wide range of ranks and sparsities.

2.5 the set of low-rank plus sparse matrices
is not closed

Here we generalize the simple example presented above and show that the
set of low-rank plus sparse matrices LS<,=(A, B) is not closed. Consequently,
in some cases, both matrix completion as in (1.91.9) and Robust PCA as in

Robust PCA as in (1.131.13)

min
-∈R<×=

‖- −"‖�

s.t. - ∈ LS<,=(A, B).

Matrix completion as in
(1.91.9)

min
-∈R<×=

‖%Ω- − 1‖�

s.t. rank(-) ≤ A.

(1.131.13) can fail to have any solutions at all. This is equivalent to the notion of
the matrix rigidity function not being lower semicontinuous as observed in
trivial cases by Kumar et al.Kumar et al. (20142014) and described in the preceding sections.

Theorem 2.1 (LS=,=(A, B) is not closed). The set of low-rank plus sparse matrices

LS=,=(A, B) is not closed for A ≥ 1, B ≥ 1 provided (A + 1)(B + 2) ≤ =, or provided
(A + 2)3/2B1/2 ≤ = where B is of the form B = ?2A for an integer ? ≥ 1.

Proof. By Theorem 2.22.2 and Theorem 2.32.3.

Theorem 2.12.1 implies that there are matrices" such that the Robust PCA
problem in (1.131.13) and matrix completion in (1.91.9) are ill-posed in that the
objective can be decreased to zero with the sequence of iterates converging
to a matrix outside of the feasible set LS<,=(A, B). Moreover, the proof of
Theorem 2.22.2 and Theorem 2.32.3 is constructive, and achieved by designing
constituents ! and ( of the sequence diverge with unbounded energy. The
problem size bounds in Theorem 2.12.1 allow for matrices with A = O(=ℓ ) to
have number of corruptions of order B = O(=2−3ℓ ) for ℓ ∈ [0, 1/2], which for
constant rank allows B to be quadratic in =, and for ℓ ∈ (1/2, 1] to have the
number of corruptions of order B = O(=(1−ℓ )).
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We extend the example of LS3,3(1, 1) with "3 ∈ R3×3 given in (2.52.5) by
constructing "= , #= ∉ LS=,=(A, B) and yet for which there exists a sequence
of matrices"(8)= (�)which are in LS=,=(A, B) and lim�→0 ‖"(8)= −"(8)= (�)‖� = 0.
Matrix"=(�) as in (2.122.12) demonstrates that LS=,=(A, B) is not closed for A ≤ B
(Lemma 2.32.3) and matrix #=(�) as in (2.182.18) is constructed for A > B (Lemma
2.42.4). In both cases we require = to be sufficiently large in terms of A and B.

For the case A ≤ B, consider"= and"=(�) of the following general form

"= =

(
0A,A �

� 0=−A,=−A

)
, "=(�) =

(
0A,A �

� �� �

)
, (2.8)

where �, �) ∈ RA×(=−A) and 0:,: denotes the :× : matrix with all zero entries.
These constructed matrices satisfy the following properties.

Lemma 2.2 (General form of "=). Let "= and "=(�) be as defined in (2.82.8).
Then "=(�) ∈ LS=,=(A, A). Furthermore

lim
�→0
‖"=(�) −"= ‖� = 0. (2.9)

Proof. We can write "=(�) in the form( 1
� �A

�

) (
�A ��

)
+

(
− 1
� �A 0
0 0

)
, (2.10)

which shows that "=(�) ∈ LS=,=(A, A). It also follows trivially from the
definition (2.82.8) that (2.92.9) is satisfied.

Remark 2.2 (Nested property of LS<,=(A, B) sets). Note that LS<,=(A, B) sets
form a partially ordered set

LS<,=(A, B) ⊆ LS<,=(A′, B′), (2.11)

for any A′ ≥ A and B′ ≥ B.

Asa consequence"=(�) ∈ LS=,=(A, A) implies thatalso"=(�) ∈ LS=,=(A, B)
for B ≥ A.

With Lemma 2.22.2 we give the general form of "= and "=(�) such that
"=(�) ∈ LS=,=(A, B) for B ≥ A. It remains to show that, for a more specific
choice of � and �, we also have"= ∉ LS=,=(A, B). In particular, we construct
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"= and "=(�) as follows.

"= =

©«

0A,A � �(1) . . . �(ℓ )

) 0:,: . . . . . . 0:,A
�(1)

...
. . .

...
...

...
. . .

...

�(ℓ ) 0A,: . . . . . . 0A,A

ª®®®®®®®¬
,

"=(�) =

©«

0A,A � �(1) . . . �(ℓ )

) �)� . . . . . . �)�(;)

�(1)
...

. . .
...

...
...

. . .
...

�(ℓ ) ��(ℓ )� . . . . . . ��(ℓ )�(ℓ )

ª®®®®®®®¬
,

(2.12)

where , � ∈ RA×: are matrices with all non-zero entries, �(8) , �(8) ∈ RA×A
are arbitrary non-singular matrices which may, but need not, be the same,
00,1 and 10,1 denote 0 × 1 matrices with all entries equal to zero or one
respectively, and we set ℓ = d(B + 1)/2e, : = dℓ/Ae.

By construction, the matrix size is = = A(ℓ + 1) + :, due to the ℓ matrices
�(8) and �(8) for 8 = 1, . . . , ℓ each being of size A × A, the top left A × A zero
matrix and : columns of  and �.

Lemma 2.3. LS=,=(A, B) is not closed for 1 ≤ A ≤ B provided

= ≥ A
(⌈
B + 1

2

⌉
+ 1

)
+

⌈
d(B + 1)/2e

A

⌉
. (2.13)

Proof. Take "= as in (2.122.12). By Lemma 2.22.2 there exists a matrix sequence
"=(�) ∈ LS=,=(A, A) such that ‖"=(�) −"= ‖� → 0 as �→ 0. Since for A ≤ B
we have LS=,=(A, A) ⊆ LS=,=(A, B), it follows also that "=(�) ∈ LS=,=(A, B).

It remains to prove that"= ∉ LS=,=(A, B), which is equivalent to showing
Rig("= , A) > B. We show that having a sparse component ‖(‖0 ≤ B is
insufficient for rank("= − () ≤ A, because for any choice of such ( with at
most B non-zero entries, the matrix"= −(must have a (A+1)× (A+1)minor
with nonzero determinant implying rank("= − () ≥ A + 1.

In order to establish rank("= − () ≥ A + 1 we consider 2ℓ minors of "=

each of size (A + 1) × (A + 1). For ℓ of these we select minors that include �(8),
8 = 1, . . . , ℓ , along with an additional column from the first A columns and
an additional row entry from row index A + 1 to : + A from "= ; and for the
remaining ℓ minors we similarly choose a �(8) and an additional row and
column as before.

These minors are of the form �8 as shown in (2.142.14) where the 8 , �8 are
chosen to be different entries from , � for each 8 = 1, . . . , ℓ . This requires
, � to be of size A × : for : = dℓ/Ae. Recall that, by construction of "= ,
the , � have no zero entries and �(8) , �(8) are each full rank. The �8 are
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constructed as

�8 =



(
0A,1 �(8)

8 01,A

)
, 8 = 1, . . . , ℓ ,(

01,A �8−ℓ

�(8−ℓ ) 0A,1

)
, 8 = ℓ + 1, . . . , 2ℓ ,

(2.14)

where 0D,E denotes the D × E matrix with all entries equal to zero.
Note that matrices �8 do not have disjoint supports as they have some

elements from the top left A × A submatrix of "= in common. These are the
left A zero entries in the first row of �8 for 8 = 1, . . . , ℓ and the top A zero
entries in the first column of �8 for 8 = (ℓ + 1, . . . , 2ℓ ). We refer to these
entries as the intersecting part of �8 .

We now consider the possible ( such that rank("= − () = A and show
that any such ( must have at least 2ℓ nonzeros, thus Rig("= , A) ≥ 2ℓ . This
follows by noting that although the�8 have intersecting portions,( restricted
to the 8Cℎ subminor associated with �8 will have at least one distinct nonzero
per 8. Consider the �8 for 8 = 1, . . . , ℓ associatedwith 8 and�(8) and let (8 be
the corresponding (A + 1) × (A + 1) sparsity mask of (. It follows that (8 must
have at least one entry in the non-intersecting set otherwise the determinant
of �8 + (8 is of the form

|�8 + (8 | =

���������
B8 �(8)

8 0 . . . 0

��������� = 8 |�(8) | ≠ 0, (2.15)

which is insufficient for the rank of �8 to become rank deficient; similarly for
8 = ℓ + 1, . . . , 2ℓ .

Having shownRig("= , A) ≥ 2ℓ we set ℓ = d(B + 1)/2e,which then implies
that "= ∉ LS=,=(A, B). By the construction of "= in this argument we have

= ≥ A(ℓ + 1) + : (2.16)

due to the ℓ matrices �(8) and �(8) each of size A × A, the top left A × A matrix
0A,A and : columns of � or rows of  respectively, and by zero padding of
the matrix we can arbitrarily increase its size. Substituting ℓ = d(B + 1)/2e
and : = dℓ/Ae, we conclude that LS=,=(A, B) is not a closed set for B ≥ A ≥ 1
provided

= ≥ A
(⌈
B + 1

2

⌉
+ 1

)
+

⌈
d(B + 1)/2e

A

⌉
. (2.17)
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Turning to the A > B case, we now build upon Lemma 2.42.4 by constructing
matrices #= and #=(�) as

#= =

©«
"̂=′ 0 . . . 0

0 �(1,1) . . . �(1,B+1)

...
...

. . .

0 �(B+1,1) �(B+1,B+1)

ª®®®®®¬
=

(
"̂=′ 0=′, (B+1)(A−B)

0(B+1)(A−B), =′ �

)

#=(�) =
(

"̂=′(�) 0=′, (B+1)(A−B)
0(B+1)(A−B), =′ �

) , (2.18)

where �(8 , 9) ∈ R(A−B)×(A−B) are identical full rank matrices and

"̂=′ =

©«

0B,B � �(1) . . . �(ℓ )

) 0 . . . . . . 01,B

�(1)
...

. . .
...

...
...

. . .
...

�(ℓ ) 0B,1 . . . . . . 0B,B

ª®®®®®®®¬
,

"̂=′(�) =

©«

0B,B � �(1) . . . �(ℓ )

) �)� . . . . . . �)�(ℓ )

�(1)
...

. . .
...

...
...

. . .
...

�(ℓ ) ��(ℓ )� . . . . . . ��(ℓ )�(ℓ )

ª®®®®®®®¬

, (2.19)

have the same structure as in (2.122.12) but with A replaced by B and as a result
�(8 , 9) , �(8 , 9) ∈ RB×B , , � ∈ RB , ℓ = d(B + 1)/2e, so "̂=′ ∉ LS=′,=′(B, B) while
"̂=′(�) ∈ LS=′,=′(B, B).

By construction, the size of "̂=′ is =′ = B(ℓ + 1) + 1 and the size of #= is
= = =′ + (B + 1)(A − B).

Lemma 2.4. LS=,=(A, B) is not closed for 1 ≤ B < A provided

= ≥ B
(⌈
B + 1

2

⌉
+ 1

)
+ 1 + (B + 1)(A − B). (2.20)

Proof. Consider #= and #=(�) from (2.182.18). By additivity of rank for block
diagonal matrices, rank (�) = (A − B) and "̂=′(�) ∈ LS=′,=′(B, B), we have that
#=(�) ∈ LS=,=(A, B).

It remains to show that #= ∉ LS=,=(A, B) by proving that Rig(#= , A) >
B. We show that having a sparse component ‖(‖0 ≤ B is insufficient for
rank(#=−() ≤ A,because forany such(,matrix (#=−()musthave at leastone
(A+1)×(A+1)minorwithnon-zerodeterminant, implying rank(#=−() ≥ A+1.

We consider minors �8 of size (A + 1) × (A + 1) by diagonally appending
a minor �̂8 ∈ R(B+1)×(B+1) of "̂=′ of a similar structure as in (2.142.14) and the
whole 8Cℎ diagonal block �(8 ,8) ∈ R(A−B)×(A−B)

�8 =

(
�̂8 0
0 �(8 ,8)

)
, 8 = 1, . . . , B + 1. (2.21)
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Due to matrices �(8 ,8) being picked from the block diagonal, the intersecting
parts of supports between�8 are only the intersecting parts between individ-
ual �̂8 as explained in (2.142.14) in the proof of Lemma 2.32.3. We will ensure that
in order for rank(�8) ≤ A we require (8 to have at least one non-zero in a part
of�8 that is disjoint from�9 for 9 ≠ 8. Either (8 has at least one non-zero on a
zero block or �(8 , 9) or �̂8 . If the non-zero is in a zero block or �(8 , 9), then these
are disjoint which implies at least B + 1 non-zero entries. On the other hand,
if the non-zero is in �̂(8) then at least one entry of � must be changed in the
non-intersecting part of �̂8 as argued following equation (2.142.14). Therefore
for every �8 at least one distinct entry per 8 must be changed using the
corresponding sparsity component (8 , and since 8 = 1, . . . , B + 1, we must
also change at least B + 1 entries of #= . We thus have Rig(#= , A) ≥ B + 1.

By the construction of #= in this argument we have

= ≥ B(ℓ + 1) + 1︸       ︷︷       ︸
=′, size of "̂=′

+ (B + 1)(A − B)︸          ︷︷          ︸
size of 1B+1⊗#

, (2.22)

where the size of "̂=′ comes from ℓ times repeating the matrices �(8) and
�(8) each of size B × B, the top left B × B matrix 0B,B , the � column and  row
respectively and B+1 times repeatingmatrix� of size (A−B). By zero padding
of the matrix we can arbitrarily increase its size. Substituting ℓ = d(B + 1)/2e
gives that LS=,=(A, B) is not a closed set for A > B provided

= ≥ B
(⌈
B + 1

2

⌉
+ 1

)
+ 1 + (B + 1)(A − B). (2.23)

The following theorem gives a sufficient lower bound on the matrix size
such that both size requirements derived in Lemma 2.32.3 and Lemma 2.42.4 are
met, thus unifying both results.

Theorem 2.2. The low-rank plus sparse set LS=,=(A, B) is not closed provided

= ≥ (A + 1)(B + 2) and A ≥ 1, B ≥ 1.

Proof. Suppose = ≥ (A + 1)(B + 2). We show that this is a sufficient condition
for the matrix size requirements in (2.132.13) in Lemma 2.32.3 and (2.202.20) in Lemma
2.42.4 to hold.

Wefirst obtain a sufficient condition on thematrix size in (2.132.13) in Lemma
2.32.3, bounding

A

(⌈
B + 1

2 + 1
⌉)
+

⌈
d(B + 1)/2e

A

⌉
≤ A

(
B + 1

2 + 2
)
+

(
1
A

) (
B + 1

2 + 1
)
+ 1

≤ A
(
B + 5

2

)
+

(
B + 5

2

)
= (A + 1)

(
B + 5

2

)
≤ (A + 1)(B + 2), (2.24)
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where the first inequality in (2.242.24) comes from an upper bound on the ceiling
function dGe ≤ G + 1, the second inequality follows from A ≥ 1 and the last
inequality holds for B ≥ 1.

We also obtain a sufficient bound condition on the matrix size in (2.202.20)
in Lemma 2.42.4 of the form

B

(⌈
B + 1

2 + 1
⌉)
+ 1 + (B + 1)(A − B)

≤ B
(
B + 1

2 + 2
)
+ (B + 1)(A − B) = − B

2

2 +
3
2 + AB + 1

≤ (A + 1)(B + 1) ≤ (A + 1)(B + 2). (2.25)

The first inequality in (2.252.25) comes from an upper bound on the ceiling
function and the second inequality holds for B ≥ 1.

Combining (2.242.24), (2.252.25) with Lemma 2.32.3 and Lemma 2.42.4 gives that
LS=,=(A, B) is not a closed set for = ≥ (A + 1)(B + 2) and A ≥ 1, B ≥ 1.

2.5.1 Quadratic sparsity

Note that the condition = ≥ (A + 1)(B + 1) limits the order of A and B; in
particular if A = O(=ℓ ) then B = O(=1−ℓ ) which for ℓ ≥ 0 constrains B to be
at most linear in =, B = O(=). In Lemma 2.52.5 and Lemma 2.62.6, we extend the
result so that for A = O(=ℓ ) and ℓ ≤ 1/2 we obtain B = O(=2−3ℓ ) which for
constant rank, ℓ = 0, allows B to be quadratic O(=2).

Lemma 2.52.5 establishes a lower bound on the rigidity of block matrices in
terms of the rigidity of a single block. Lemma 2.62.6 shows that the sequence
 (�) converging to is an example ofLS=,=(A, ?2A) not being closedprovided
= ≥ ?

(
A
(⌈
A+1
2

⌉
+ 1

)
+ 1

)
. Let

 =

©«
"̂
(1,1)
=′ · · · "̂

(1,?)
=′

...
. . .

...

"̂
(?,1)
=′ · · · "̂

(?,?)
=′

ª®®®¬ ,  (�) =
©«
"̂
(1,1)
=′ (�) · · · "̂

(1,?)
=′ (�)

...
. . .

...

"̂
(?,1)
=′ (�) · · · "̂

(?,?)
=′ (�)

ª®®®¬ (2.26)

where matrices "̂(8 , 9)=′ (�) ∈ LS=′,=′(A, A) and "̂
(8 , 9)
=′ ∉ LS=′,=′(A, A) are of the

same structure as in (2.192.19) and lim�→0  (�) =  where  ∈ R(=′?)×(=′?) is
constructed by repeating "̂=′ in ? row and column blocks.

Lemma 2.5. For  as in (2.262.26)

Rig( , A) ≥ ?2Rig("̂=′ , A). (2.27)

Proof. Let ( be the sparsity matrix corresponding to Rig( , A), such that

rank( − () ≤ A, ‖(‖0 = Rig( , A),

and ( =
©«
(̂(1,1) · · · (̂(1,?)

...
. . .

...

(̂(?,1) · · · (̂(?,?)

ª®®¬ ,
(2.28)
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where (̂(8 , 9) ∈ R=′×=′ denotes the sparsity matrix used in the place of the
"̂
(8 , 9)
=′ block. A necessary condition for rank( − () ≤ A is that also the rank

of individual blocks is less than or equal to A, that is

rank("̂=′ − (̂(8 , 9)) ≤ A, ∀8 , 9 ∈ {1, . . . , ?} . (2.29)

By definition of the rigidity function as the minimal sparsity of ( such that
rank("̂=′ − () ≤ A, we have that

‖(̂(8 , 9)‖0 ≥ Rig("̂=′ , A). (2.30)

Summing over all blocks 8 , 9 ∈ {1, . . . , ?} yields the result

‖(‖0 =
?,?∑
8 , 9

‖(̂(8 , 9)‖0 ≥
?,?∑
8 , 9

Rig("̂=′ , A), (2.31)

and consequently that

Rig( , A) ≥ ?2Rig("̂=′ , A). (2.32)

Lemma 2.6. The low-rank plus sparse set LS=,=(A, ?2A) is not closed provided

= ≥ ?
(
A

(⌈
A + 1

2

⌉
+ 1

)
+ 1

)
and A ≥ 1, ? ≥ 1.

Proof. Consider  and  (�) as in (2.262.26). Repeating "̂=′ ∈ LS=′,=′(A, A) ? times
in row and column blocks does not increase the rank, so rank ( (�)) = A and
by additivity of sparsity we have that  (�) ∈ LS=,=(A, ?2A). By Lemma 2.52.5
and Rig("̂=′ , A) > A we have the strict lower bound on the rigidity of  

Rig( , A) ≥ ?2Rig("̂=′ , A) > ?2A, (2.33)

which implies that  ∉ LS=,=(A, ?2A)while  (�) ∈ LS=,=(A, ?2A).
Recall that the size of "̂=′ as defined in (2.192.19) is =′ = A(ℓ + 1) + 1 and,

since "̂=′ is repeated ? times, we obtain

= ≥ ? (A(ℓ + 1) + 1) = ?
(
A

(⌈
A + 1

2

⌉
+ 1

)
+ 1

)
, (2.34)

where the inequality comes from zero padding of the matrix to arbitrarily
expand its size.

Theorem 2.3. The low-rank plus sparse set LS=,=(A, B) is not closed provided

= ≥ (A + 2)3/2B1/2

and A ≥ 1, and B is of the form B = ?2A for an integer ? ≥ 1.
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Proof. We weaken the condition of Lemma 2.62.6 and show that it suffices to
have = ≥ (A + 2)3/2B1/2 for LS=,=(A, B) not closed by substituting B = ?2A

?

(
A

(⌈
A + 1

2

⌉
+ 1

)
+ 1

)
=

( B
A

) 1
2
(
A

(⌈
A + 1

2

⌉
+ 1

)
+ 1

)
(2.35)

≤ B1/2
(
A1/2

(
A + 5

2

)
+ 1

)
= B1/2

(
A3/2

2 + 2A1/2 + A−1/2
)

(2.36)

≤ B1/2
(
A3/2

2 + 2A1/2 + 3
2 A
−1/2

)
= B1/2 (A + 1)(A + 2)

2
√
A

(2.37)

≤ B1/2(A + 2)3/2 , (2.38)

where in the first line we substitute B = ?2A, the first inequality comes from
an upper bound on the ceiling function, the second inequality follows from
A−1/2 ≤ 3

2 A
−1/2, and the last inequality holds for A ≥ 1.

2.5.2 Almost maximally rigid examples of non-closedness

We would like to prove non-closedness of LS=,=(A, B) sets for as high ranks
A and sparsities B as possible. There cannot be a maximally rigid sequence
converging outsideLS=,=

(
A, (= − A)2

)
becauseLS=,=

(
A, (= − A)2

)
corresponds

to the set of all R=×= matrices. Similarly, it is necessary that both A ≥ 1 and
B ≥ 1 hold since sets of rank A matrices LS=,=(A, 0) and sets of sparsity B
matrices LS=,=(0, B) are both closed. As a consequence, the highest possible
rank and sparsity for which we may hope to prove that LS=,=(A, B) is not
closed corresponds to one strictly less than the maximal rigidity bound, i.e.
LS=,=

(
A, (= − A)2 − 1

)
for A ≥ 1 and also B = (= − A)2 − 1 ≥ 1.

It is shown by Kumar et al.Kumar et al. (20142014) that the matrix rigidity function might
not be semicontinuous even for maximally rigid matrices. This translates
into the set LS3,3(1, 3) not being closed as we have "(�) ∈ LS3,3(1, 3)which
converges to " ∉ LS3,3(1, 3) by choosing

" =
©«
0 1 2

3 4 0
6 0 8

ª®®¬ and "(�) =
©«
0 1 2

3 4 �23

6 �16 8

ª®®¬ . (2.39)

It is easy to check that for a general choice of {0, . . . , 8}," is maximally rigid
with Rig(", 1) = 4. However, Rig ("(�), 1) = 3 since"(�) can be expressed
in the following way

"(�) =
©«
�−1 1 2

3 �13 �23

6 �16 �26

ª®®¬ +
©«
0 − �−1 0 0

0 4 − �13 0
0 0 8 − �26

ª®®¬ . (2.40)

We therefore have that LS3,3(1, 3) is not a closed set, which is the optimal
result with the highest possible sparsity for sets of rank 1 matrices of size
3 × 3.

We pose the question as to whether this result can be generalized and
the following conjecture holds.
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Conjecture 1 (Almost maximally rigid non-closedness). The low-rank plus
sparse set LS=,=(A, B) is not closed provided

= ≥ A + (B + 1)1/2 , (2.41)

for B ∈ [1, (= − 1)2 − 1] and A ∈ [1, = − 2].

THIS W
ORK

CONJECTURE 11
4

2

1
2 1

LS (O(n), O(n2))

ℓ
r = O (nℓ)

t

s = O (nt)

maximally rigid

A diagram depicting the
results of this work, Conjec-
ture 11, and the maximally
rigid matrices in the LS(A, B)
space.

2.6 numerical examples of divergent
matrix recovery

Theorem 2.12.1 and the constructions in Section 2.52.5 indicate that there are
matrices for which Robust PCA and matrix completion, as stated in (1.131.13)
and (1.91.9) respectively, are not well defined. In particular, the objective can
be driven to zero while the components diverge with unbounded norms.
Herein we give examples of two simple matrices which are of a similar
construction to " in (2.52.5),

"(1) =
©«

2 −1 −1
−1 0 0
−1 0 0

ª®®¬ , "(2) =
©«

1 −2 −2
−2 0 0
−2 0 0

ª®®¬ ,
which are not in LS3,3(1, 1), but can be approximated by an arbitrarily close
"
(1)
� , "

(2)
� ∈ LS3,3(1, 1), and for which popular Robust PCA and matrix

algorithms exhibit this divergence. This is analogous to the problem of
diverging components for CP-rank decomposition of higher-order tensors
which is especially pronounced for algorithms employing alternating search
between individual components, see (de Silva and Limde Silva and Lim, 20082008) and references
therein.

Non-convex algorithms for solving the Robust PCA problem (1.131.13) are
typically observed to be faster than convex relaxations of the problem and
often are able to recover matrices with higher ranks than possible by solving
the convex relaxation (1.121.12). We explore the performance of four widely
considered non-convex Robust PCA algorithms: Fast Robust PCA via Gra-
dient Descent (FastGD) (Yi et al.Yi et al., 20162016), Alternating Minimization (AltMin)
(Gu and WangGu and Wang, 20162016), Alternating Projection (AltProj) (Dutta et al.Dutta et al., 20182018),
and Go Decomposition (GoDec) (Zhou and TaoZhou and Tao, 20112011) applied to "(1) or
"(2) with algorithm parameters set to rank A = 1 and sparsity B = 1. The
matrices "(1) and "(2) have values chosen so that the algorithm default
initialization causes divergence. However, we would not wish to claim this
result is typical in that we do not typically observe divergence for randomly
sampled instance of , � in (2.122.12) unless the initialization of the algorithm is
adjusted to search the diverging sequence. In each case Figure 2.12.1 shows the
convergence of the residual min-∈R<×= ‖- −"‖� to zero while the norms
of the constituents of " = ! + ( diverge.
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(a) FastGD (Yi et al.Yi et al., 20162016) applied to "(1).
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(b) AltMin (Gu and WangGu and Wang, 20162016) applied to "(2).
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(c) AltProj (Dutta et al.Dutta et al., 20182018) applied to "(2).
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(d) GoDec (Zhou and TaoZhou and Tao, 20112011) applied to "(2).

Figure 2.1: Solving for an
LS3,3(1, 1) approximation to
"(1) and "(2) using four non-
convexRobustPCAalgorithms.
Despite the norm of the resid-
ual ‖" − (!C + (C )‖� converg-
ing to zero, norms of the con-
stituents !C , (C diverge. We
set algorithms parameters A =
1, B = 1 where possible. For
FastGD we set � = 3.23 and
stepsize � = 1/6 which corre-
sponds to choosing B = 1. For
GoDecwe set the low-rank pro-
jection precision parameter to
be 10.

A line of work suggests adding a regularization term to the objective
(Gu and WangGu and Wang, 20162016; Ge et al.Ge et al., 20172017; Zhang et al.Zhang et al., 20182018). This leads to bound-
ing the energy of components resulting in the optimization problem to
have a global minimum with bounded energies of the constituents. How-
ever, the issue of ill-posedness is a more fundamental one; the best rank-A
and sparsity-B approximation still has no solution. We observe in Figure
2.22.2 that energy regularizers result in solutions that are not in the desired
space LS3,3(A, B) for values of (A, B) where the unregularized solution has
unbounded energy of its constituents.

Convex relaxations of Robust PCA such as posed in (1.121.12) do not suffer
from the divergence of constituents as shown in Figure 2.12.1 due to their
explicit minimization of their norms. However, they suffer from sub-optimal
performance. Figure 2.22.2 depicts recovered ranks, sparsities and their convex
relaxations based on choice for� of"(1) for Principal Component Pursuit by
Alternating Directions (PCP) (Candès et al.Candès et al., 20112011) and Inexact Augmented
Lagrangian Method (IALM) (Lin et al.Lin et al., 20102010). For both PCP and IALM, as
the regularization parameter � is increased from near zero it first produced
a solution with A = 0 and B = 5, then at approximately � = 1/2 transitions to
solutions with overspecified degrees of freedom A = 2 and B = 5, and then
for large values of � gives solutions with A = 2 and B = 0. It is interesting to
note that for these convex relaxations of Robust PCA there were no values
of � that would produce solutions with A = 1 and B = 1 which are the
parameters for which the non-convex Robust PCA algorithms diverge. In
contrast, the aforementionednon-convex algorithms forRobust PCAapplied
to "(1) converge to zero residual with bounded constituents for the rank
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(a) PCP (Candès et al.Candès et al., 20112011) applied to "(1).
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(b) IALM (Lin et al.Lin et al., 20102010) applied to "(1).

Figure 2.2: Recovered ranks
and sparsities using two con-
vex Robust PCA algorithms
applied to "(1) with varying
choice of �. Both PCP and
IALM do not recover the A =
1, B = 1 solution for any �.
IALM recovers solutions with
overspecified degrees of free-
dom A = 2, B = 5 for � roughly
1/2.

and sparsity parameters generated by PCP and IALM.
The diverging constituents in Figure 2.12.1 follow the selected (A, B) for

which"(1) , "(2) ∉ LS3,3(A, B) butproduce a sequence !C+(C ∈ LS3,3(A, B) and
limC→∞ ‖"(8)−(!C+(C)‖ = 0 but ‖!C ‖� and ‖(C ‖� diverge. This phenomenon
does not occur for these matrices if we allow other choices of (A, B). In
particular, Alternating Projection method by Netrapalli et al.Netrapalli et al. (20142014) has the
rank constraint prescribed and the sparsity constraint is chosen adaptively
based on the parameter � and the largest singular value of the low-rank
component. Such methods, that do not prescribe both A and B, are less
susceptible to the diverging constituents problem. Methods such as the
Alternating Projection (Netrapalli et al.Netrapalli et al., 20142014) typically have a parameter
which controls values of (A, B) and can be selected, such that when applied
to "(1) it gives a local minimum in LS3,3(1, 1).

Similar to the divergence of the non-convex Robust PCA algorithms,
non-convex matrix completion algorithms applied to "(1) with only the
top left, index (1, 1), entry missing can diverge. Figure 2.32.3 depicts the It is required to provide the al-

gorithm with an initial guess
that does not have 0 as the top
left entry.

residual error converging to zero and energy of the recovered low-rank
matrix diverging for four exemplar non-convex algorithms: Power Factoriza-
tion (PF) (Haldar and HernandoHaldar and Hernando, 20092009), Low-Rank Matrix Fitting (LMaFit)
(Wen et al.Wen et al., 20122012), Conjugate Gradient Iterative Hard Thresholding (CGIHT)
(Blanchard et al.Blanchard et al.,20152015) andAlternatingSteepestDescent (ASD) (Tanner and WeiTanner and Wei,
20162016).

The diverging sequences of low-rank plus sparse matrices constructed
in §2.52.5, and followed by iterative Robust PCA and matrix completion al-
gorithms, are pathological in the sense that the low-rank and the sparse
component must become highly negatively correlated. In other words, their
energy and the magnitude of their inner product must diverge to infinity. In
the following section, we discuss how the issue of the diverging components
can be overcome and the low-rank plus sparse matrix set be closed.
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(a) PF (Haldar and HernandoHaldar and Hernando, 20092009) applied to "(1).
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(b) LMaFit (Wen et al.Wen et al., 20122012) applied to "(1).
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(c) CGIHT with restarts (Blanchard et al.Blanchard et al., 20152015) ap-
plied to "(1).
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(d) ASD (Tanner and WeiTanner and Wei, 20162016) applied to "(1).

Figure 2.3: Recovery of "(1)
given a rank 1 constraint by
four non-convex matrix com-
pletion algorithm. Despite the
norm of the residual ‖H −
%Ω(-C )‖� converging to zero,
the norm of the recovered ma-
trix -C diverges.

2.7 closing the set of low-rank plus sparse
matrices

The set of low-rank plus sparse matrices LS<,=(A, B) is constructed as the
Minkowski sum of two closed sets: the set of low-rank matrices and the
set of sparse matrices, and therefore, it is not guaranteed to be closed by
construction. Awell-known sufficient condition for the sum of two sets to be
also a closed set is that the addition is between a closed set and a closed compact

set, see for example (Aliprantis and BorderAliprantis and Border, 20062006, Lemma 5.3) restated here.

Lemma 2.7 (The sum of a closed set and a closed compact set is closed).
The Minkowski sum of a closed compact set � ⊆ + and a closed set � ⊆ + in a

normed vector space +

� + � = {0 + 1 : 0 ∈ �, 1 ∈ �} , (2.42)

is a closed set.

Proof. Take a sequence 2= = 0= + 1= ∈ � + � that converges to some 2= →
2 ∈ + . Since � is compact, there exist a subsequence 0=8

8→∞−−−→ 0 ∈ �, thus:

1=8 = 2=8 − 0=8 → 2 − 0. (2.43)
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From � being closed, we have that 2 − 0 ∈ �, which gives:

2 = 0 + (2 − 0) ∈ � + �. (2.44)

The above lemma suggests that in order to resolve the issue of non-
closedness of LS<,=(A, B) we should restrict the norm of one of the compo-
nents, e.g. the low-rank component as ‖!‖� ≤ � for some � > 0. The upper
bound on the Frobenius norm makes the set the set of low-rank matrices
closed and compact, and as such, its sum with the closed set of sparse matrices
is guaranteed to be closed by Lemma 2.72.7.

However, by bounding the norm of the low-rank component as ‖!‖� ≤ �,
the set is no longer conic, and the problembecame scale-dependent. To retain
the conic property of the set, we instead bound the norm of the low-rank
component in proportion to the norm of the matrix sum as ‖!‖� ≤ �‖-‖�
for some � > 0. This leads to Definition 1.21.2 of the set of bounded low-rank
plus sparse matrices LS�<,=(A, B).

A small modification in the proof of Lemma 2.72.7 leads to the following
result that shows the constraint ‖!‖� ≤ �‖-‖� is sufficient for the set to be
closed.

Lemma 2.8 (The set of bounded low-rank plus sparse matrices is closed).
The set of low-rank plus sparse matrices, whose low-rank component has its norm

proportionally bounded to the norm of the matrix sum

LS�<,=(A, B) =
{
- = ! + ( ∈ R<×= : rank(!) ≤ A, ‖(‖0 ≤ B, ‖!‖� ≤ �‖-‖�

}
,

is a closed set.

The proof of the lemma is given on page 3737 in §2.92.9 and follows from
taking subsequences of matrices -8 from a sufficiently large 80 ∈ N, for
which ‖!8 ‖� ≤ � for all 8 ≥ 80 and some � > 0, and then applying the same
arguments as in the proof of Lemma 2.72.7.

However, the sum of two matrices in the set LS�<,=(A, B) does not need to
be a sufficiently bounded low-rank plus sparse matrix in general. In other
words, it is difficult to ensure that for -1 , -2 ∈ LS�<,=(A, B) that their sum
-1 + -2 ∈ LS�′<,=(2A, 2B) for some �′ > 0.

This limitation is overcome in Definition 1.31.3 of the set of incoherent
low-rank plus sparse matrices

LS<,=(A, B, �) =

! + ( ∈ R
<×= :

rank(!) ≤ A, ‖(‖0 ≤ B
max8∈{1,...,<} ‖*) 48 ‖2 ≤

√
�A
<

max8∈{1,...,=} ‖+) 58 ‖2 ≤
√

�A
=

 ,
which satisfies the additive property that the sum of two incoherent low-
rank plus sparse matrices is a low-rank plus sparse matrix with the same
incoherence �.
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Lemma 2.9 (Addition preserves incoherence). The sum of two incoherent low-

rank plus sparse matrices -1 , -2 ∈ LS<,=(A, B, �) is also an incoherent low-rank

plus sparse matrix -1 + -2 ∈ LS<,=(2A, 2B, �), and consequently

LS<,=(A, B, �) + LS<,=(A, B, �) = LS<,=(2A, 2B, �), (2.45)

where the plus sign denotes the Minkowski sum of two sets.

Proof. Let -1 , -2 ∈ LS<,=(A, B, �) with -1 = !1 + (1, -2 = !2 + (2, and
*1 , *2 and +1 , +2 being the left and the right singular vectors of !1 and !2
respectively.

Construct the sum - = ! + (, where ! = !1 + !2, ( = (1 + (2, and*,+
are the left and right singular vectors of the newly constructed !. Since the
column space of * is a subspace of the column space of the concatenated
matrix [*1*2]we have that the projection on* must have a smaller or equal
norm than the projection on [*1*2]*) 48

2
2 ≤

[*1*2]) 48
2

2
(2.46)

= 4)8 [*1*2] [*1*2]) 48 (2.47)

=
*)

1 48
2

2 +
*)

2 48
2

2 ≤ 2
�A

<
, (2.48)

where in the third line we use the definition of incoherence. Since the rank of
the matrix doubled, the inequality yields the desired result ‖*) 48 ‖ ≤

√
�2A
< .

The argument can be followed mutatis mutandis for the upper bound on the
right singular vectors + .

We now show that if - ∈ LS<,=(A, B, �) with � <
√
<=/(A

√
B) then also

‖!‖� ≤ �‖-‖� for � =
(
1 − �2A2B/(<=)

)−1/2

Lemma 2.10. Let - = ! + ( ∈ LS<,=(A, B, �) and � <
√
<=/(A

√
B), then we can

upper bound the Frobenius norm of the low-rank and the sparse component as

‖!‖� ≤
1√

1 − �2
‖-‖� =

(
1 − �2 A

2B

<=

)−1/2
‖-‖� (2.49)

‖(‖� ≤
1√

1 − �2
‖-‖� =

(
1 − �2 A

2B

<=

)−1/2
‖-‖� , (2.50)

where � := � A
√
B√

<=
is the rank-sparsity correlation coefficient as defined also in

Lemma 2.12.1. Consequently

LS<,=(A, B, �) ⊂ LS�<,=(A, B) (2.51)

for � =
(
1 − �2A2B/(<=)

)−1/2
.
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Proof. Let - = ! + ( ∈ LS<,=(A, B, �). We denote � = � A
√
B√

<=
to be the rank-

sparsity correlation bound as defined in Lemma 2.12.1, and by � <
√
<=/(A

√
B),

we have that � < 1. By conicity of LS�<,=(A, B) and LS<,=(A, B, �), we can
assume without loss of generality ‖-‖� = 1. The rank-sparsity correlation
bound in Lemma 2.12.1 states

� ≥ |〈!, (〉|
‖!‖�‖(‖�

, (2.52)

which combined with the rearranged terms of the identity ‖-‖2
�
= 1 =

‖!‖2
�
+ ‖(‖2

�
+ 2〈!, (〉 yields

� ≥ |〈!, (〉|
‖!‖�‖(‖�

=
1
2

���� 1
‖!‖�‖(‖�

− ‖(‖�‖!‖�
− ‖!‖�‖(‖�

���� . (2.53)

The proof follows by showing that the inequality in (2.532.53) implies an
upper bound on ‖!‖� and ‖(‖�. For ease of notation, we denote G = ‖!‖�
and H = ‖(‖�, and multiply the inequality in (2.532.53) by ‖!‖� ‖(‖�

2�GH ≥ |1 − G2 − H2 |. (2.54)

where we used that ‖!‖� , ‖(‖� are strictly positive.
The case of 1 − G2 − H2 ≥ 0 implies that G ≤ 1 and H ≤ 1, and thus

concludes the proof.
In the other case of 1− G2− H2 ≤ 0, the inequality in (2.542.54) is equivalent to

2�GH ≥ G2 + H2 − 1, (2.55)

whichhas two roots H = −2G±
√
22G2 − G2 + 1. Since G, H denote theFrobenius

norm of ! and ( respectively, we seek only the real roots, for which to exist
we need 22G2 − G2 + 1 ≥ 0, and because 2 < 1, we can rearrange the terms as

G ≤ 1√
1 − �2

, (2.56)

which is equivalent to

‖!‖� ≤
1√

1 − �2
=

(
1 − �2 A

2B

<=

)−1/2
. (2.57)

By ‖-‖� = 1, the matrix sum is also in the desired set - ∈ LS�<,=(A, B) when
� =

(
1 − �2A2B/(<=)

)−1/2.

Corollary 2.1. The set of incoherent low-rank plus sparse matrices LS<,=(A, B, �)
is closed when � <

√
<=/(A

√
B).

Proof. By Lemma 2.82.8 and by the upper bound ‖!‖� ≤ � ‖-‖� for � =(
1 − �2A2B/(<=)

)−1/2 in Lemma 2.102.10.
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2.8 summary and discussion

In this chapter, we discussed regularisation and sources of ill-posedness
in matrix recovery problems. In particular, we brought into attention an
overlooked issue in Robust PCA and matrix completion: that both problems
can be ill-posed because the set of low-rank plus sparsematrices is not closed
without further conditions being set on the constituent matrices.

It remains to be determined what fraction of the set LS<,=(A, B) is open,
or similarly what fraction has constituents whose norm exceeds a prescribed
threshold to ensure well conditioning; it should be noted that in the case
of Tensor CP rank the fraction of the space of tensors with unbounded
constituent energy is a positivemeasure (de Silva and Limde Silva and Lim, 20082008). Numerical
experiments confirm that Robust PCA and matrix completion algorithms
used on specifically constructed matrices follow the diverging sequences,
however, it remains to be seen if this problem arises in a practical setting.

It also remains to determine what is the maximal matrix size =, as a
function of (A, B), such that the set LS=,=(A, B) is open. We give lower bound
of =(A, B) ≥ (A + 1)(B + 2) and =(A, B) ≥ (A + 2)(3/2)B1/2 in Theorem 2.12.1 and
conjecture the best attainable bound is achievedat =(A, B) ≥ A+(B+1)1/2 using
bounds on maximum matrix rigidity, see Conjecture 11. Moreover, we note
that there are references in the literature (Gu and WangGu and Wang, 20162016; Waters et al.Waters et al.,
20112011) which reference the use of restricted isometry constants (RIC) for
LS<,=(A, B) in order to prove recovery of Robust PCA using non-convex
algorithms. A consequence of our result is that the lower RIC bound is not
satisfied for some " ∈ LS<,=(A, B) unless further restrictions are imposed
on the constituents, such as bounds on the Frobenius norm of one of the
components that form ", as done in Definition 1.21.2:

LS<,=(A, B, �) =
{
- = ! + ( ∈ R<×= : rank(!) ≤ A, ‖(‖0 ≤ B, ‖!‖� ≤ �‖-‖�

}
.

However, the set of bounded low-rank plus sparse matrices LS�<,=(A, B)
does not need to satisfy the additive property in general. The problem is
overcome in Definition 1.31.3 of the set of incoherent low-rank plus sparse
matrices which satisfy the additive property as shown in Lemma 2.92.9.
In addition, Lemma 2.102.10 shows that LS<,=(A, B, �) ⊆ LS�<,=(A, B) for � =(
1 − �2A2B/(<=)

)−1/2 when � <
√
<=/(A

√
B).

In the following Chapter 33, which deals with the restricted isometry
constants (RICs) for random linear maps constrained to the set of low-rank
plus sparsematrices and requires the set to be closed,we considerLS�<,=(A, B)
from Definition 1.21.2. In Chapter 44, which deals with the recovery of low-rank
plus sparsematrices and requires the additive property shown in Lemma 2.92.9,
we use the set of incoherent low-rankplus sparsematricesLS<,=(A, B, �) from
Definition 1.31.3. A consequence of Lemma 2.102.10 is that the RICs developed in
Chapter 33 also apply for LS<,=(A, B, �)when � <

√
<=/

(
A
√
B
)
.
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2.9 supporting lemmata

This section contains proofs of lemmata used in the chapter.

Lemma 2.8 (The set of bounded low-rank plus sparse matrices is closed).
The set of low-rank plus sparse matrices, whose low-rank component has its norm

proportionally bounded to the norm of the matrix sum

LS�<,=(A, B) =
{
- = ! + ( ∈ R<×= : rank(!) ≤ A, ‖(‖0 ≤ B, ‖!‖� ≤ �‖-‖�

}
,

is a closed set.

Proof. Take a sequence -8 = !8 + (8 ∈ LS�<,=(A, B) that converges to a matrix
- ∈ R<×= as 8 →∞. Since, also ‖-8 ‖� → ‖-‖�, we have that for any � > 0,
there exists 80 ∈ N such that

∀8 > 80 : ‖-‖� − � ≤ ‖-8 ‖� ≤ ‖-‖� + �, (2.58)

which, combined with ‖!8 ‖� ≤ � ‖-8 ‖�, implies that ‖!8 ‖� ≤ � ‖-‖� + ��
for all 8 ≥ 80.

Denote the closed set of rank-A matrices whose Frobenius norm is
bounded by � > 0 as

ℒ<,= (A, �) =
{
. ∈ R<×= : rank(.) ≤ A, ‖.‖� ≤ �

}
, (2.59)

which is also compact by being closed and bounded.
We have that !8 ∈ ℒ<,= (A, ‖-‖� + ��) for all 8 ≥ 80. Since the set is

compact and closed, we can assume, by passing to a subsequence, that
!8

8→∞−−−→ ! ∈ ℒ<,= (A, � ‖-‖� + ��) as 8 ≥ 80.
Additionally, since � > 0 is fixed, the bound on the Frobenius norm

of the low-rank component ‖!8 ‖� ≤ � ‖-8 ‖� must also hold in the limit
‖!‖� ≤ � ‖-‖�.

By the set of B-sparse matrices being closed, we have that the limit point

(8 = -8 − !8 → - − !, (2.60)

is also an B-sparse matrix, thus

- = ! + (- − !) ∈ LS�<,=(A, B), (2.61)

proving that LS�<,=(A, B) is closed.

What follows is the proof of Lemma 2.12.1 that controls the correlation
between an incoherent low-rank matrix and a sparse matrix.

Lemma 2.1 (The rank-sparsity correlation bound). Let !, ( ∈ R<×= and

! = *Σ+)
be the singular value decomposition of !, then

|〈!, (〉| ≤
abs (*) abs

(
+)

)
∞
�max (!) ‖(‖1 , (2.2)
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where abs(·) denotes the entry-wise absolute value of a matrix, the matrix norms

are vectorised entry-wise ℓ?-norms, and �max (!) is the largest singular value of !.
As a consequence, if ! is a rank-A matrix that is �-incoherent and ( is an

B-sparse matrix

|〈!, (〉| ≤ �
A
√
B

√
<=
‖!‖� ‖(‖� , (2.3)

where we define �
�
A,B := � A

√
B√

<=
to be the (A, B, �)-rank-sparsity correlation coefficient.

Proof. For !, ( ∈ R<×= and ! = *Σ+) being the singular value decomposi-
tion of !, we have

|〈!, (〉| =

������ ∑
(8 , 9)∈[<]×[=]

(8 , 9 !8 , 9

������ =
������ ∑
(8 , 9)∈[<]×[=]

(8 , 9 4
)
8 *Σ+

) 59

������ (2.62)

≤
∑

(8 , 9)∈[<]×[=]

��(8 , 9 �� ����(*) 48

))
Σ

(
+) 59

)���� (2.63)

=
∑

(8 , 9)∈[<]×[=]

��(8 , 9 �� ����� A∑
:=1

�:
(
*) 48

)
:

(
+) 59

)
:

����� (2.64)

≤
∑

(8 , 9)∈[<]×[=]

��(8 , 9 �� A∑
:=1

�: abs
(
*) 48

)
:

abs
(
+) 59

)
:

(2.65)

≤ �max(!)
∑

(8 , 9)∈[<]×[=]

��(8 , 9 �� abs
(
*) 48

))
abs

(
+) 59

)
(2.66)

≤ �max(!) ‖(‖1
abs (*) abs

(
+)

)
∞

(2.67)

where in the first line in (2.622.62) we denote 48 ∈ R< , 58 ∈ R= to be the canonical
basis vectors of R< and R= , the inequality in the second line (2.632.63) comes
from the subadditivity of the absolute value, in the third line (2.642.64) we
write out the inner product as a sum, in the fourth line (2.652.65) we use the
subadditivity and multiplicativity of the abslolute value and denote abs(·)
as the entry-wise absolute value of a vector, the fifth line (2.662.66) comes from
�max(!) being the largest singular value of !, and the final line in (2.672.67) comes
from the entry-wise ℓ∞-norm bounding the absolute value of all entries of(
abs (*) abs

(
+)

) )
.

If the low-rank component ! is also �-incoherent, we further haveabs (*) abs
(
+)

)
∞
= max
(8 , 9)∈[<]×[=]

abs
(
*) 48

))
abs

(
+) 59

)
(2.68)

≤
*) 48


2

+) 59


2 (2.69)

≤ �
A√
<=

, (2.70)

where the first upper bound comes from the Cauchy-Schwarz inequality
on the entry-wise absolute values of*) 48 and +) 59 , and the second upper
bound comes from Definition 2.12.1 of incoherence.
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Combining (2.702.70) with (2.672.67), the fact that ‖(‖1 ≤
√
B ‖(‖� for B-sparse

matrices, and that �max ≤ ‖!‖� yields the result in (2.32.3)

§2.9 · supporting lemmata 39



3restricted isometry
constants for the
low-rank plus sparse
matrix set

synopsis

In this chapter, we show that random measurement operators
obeying the concentration of measure inequalities act as approxi-
mate isometrieswhen restricted to the set of low-rankplus sparse
matrices. These random linear maps can overcome the dimen-
sionalityof theLS<,=(A, B, �) set andhave their restricted isometry
constants in respect to the incoherent low-rank plus sparse ma-
trix set upper bounded as long as the number of measurements
is proportional to the number of degrees of freedom of the set.
Examples of random linear maps which satisfy these bounds
include random Gaussian matrices, random Bernoulli matrices,
and the Fast Johnson-Lindenstrauss transform. We discuss the
essential properties of the suitable class of random maps that
imply the upper bounds on restricted isometry constants and
their connection to the widely known Johnson-Lindenstrauss
lemma.

3.1 introduction

At the heart of compressed sensing is the fact that many signal classes have
a low-dimensional structure compared to the high-dimensional ambient
space. Remarkably, matrices and projections drawn from certain random
distributions allow for a compressedmeasurement of signalswith such struc-
ture, while preserving enough information to enable their exact recovery in
the original high-dimensional space.

The principle of employing random projections in order to overcome
the high dimensionality of signals, referred to as sketching, has found exten-
sive applications far beyond compressed sensing. Many high-dimensional
problems can be projected to a lower-dimensional space where they can
be solved more efficiently. In recent years, sketching has been successfully
used in a range of numerical linear algebra problems leading to algorithms
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with time and space complexity that is orders of magnitude lower compared
to their deterministic counterparts. Exemplar cases include solving least-
squares problems (Drineas et al.Drineas et al., 20112011; Dhillon et al.Dhillon et al., 20132013), low-rankmatrix
factorization (Halko et al.Halko et al.,20112011),semidefiniteprogramming (Yurtsever et al.Yurtsever et al.,
20192019), and tensor decompositions (Battaglino et al.Battaglino et al., 20182018; Jin et al.Jin et al., 20202020) –
for an overview of randomized algorithms in numerical linear algebra see
(Martinsson and TroppMartinsson and Tropp, 20202020).

The fundamental mathematical innovation that allows the aforemen-
tioned applications is the concentration of measure phenomenon. The study
of the concentration of measure is an important subject in probability and
analysis, for a systematic study see the monograph of LedouxLedoux (20012001), and
has many applications, e.g. the random matrix theory (TaoTao, 20122012). Here
we focus on the fact that it provides a way to reduce the dimensionality of
high-dimensional data without losing information about its geometry.

In compressed sensing, the main tool for the analysis of recovery guar-
antees and convergence of algorithms are the restricted isometry constants

(RICs) introduced in the seminal work of Candès and TaoCandès and Tao (20052005). If a mea-
surement operator has its RICs bounded, it acts as an approximate isometry
when restricted to signals from a certain set. Consequently, Candès and TaoCandès and Tao
(20052005) show that if the RICs of a measurement operator is sufficiently upper-
bounded, then there exists a unique sparse solution to the compressed
sensing problem that can be provably recovered by solving a convex op-
timisation problem. An equivalent result for low-rank plus sparse matrix
sensing was proved by Recht et al.Recht et al. (20102010).

While this chapter extends the previous results of bounded restricted
isometry constants to the case of low-rank plus sparse sets, the following
Chapter 44 shows that these bounds imply an exact recovery by computation-
ally tractable methods such as a convex relaxation or by gradient descent
algorithms.

For ease of reference:

LS<,=(A, B, �) =

- = ! + ( :
rank(!) ≤ A,
‖(‖0 ≤ B,

‖*) 48 ‖2 ≤
√

�A
< ,

‖+) 48 ‖2 ≤
√

�A
=



The main object of interest in this chapter are the RICs for measurement
operatorsA : R<×= → R? when restricted to the set of low-rank plus sparse
matrices LS<,=(A, B, �) as defined in Definition 1.31.3, page 99. The natural gen-
eralization of the RIC definition from sparse vectors and low-rank matrices,
defined by Candès and TaoCandès and Tao (20052005) and Recht et al.Recht et al. (20102010) respectively, to the
set of low-rank plus sparse matrices LS<,=(A, B, �) is given in Definition 3.13.1.

Definition 3.1 (RIC for LS<,=(A, B, �)). LetA : R<×= → R? be a linear map. For

An alternative term is the re-

stricted isometry property (RIP).
A measurement operator is
said to satisfy the RIP if its
RICs remain bounded as ?
and <= go to infinity at a
fixed rate � := ?/(<=).

every pair of integers (A, B) and every � ≥ 1, define the (A, B, �)-restricted isometry

constant to be the smallest ΔA,B,�(A) > 0 such that(
1 − ΔA,B,�(A)

)
‖-‖2� ≤ ‖A(-)‖

2
2 ≤

(
1 + ΔA,B,�(A)

)
‖-‖2� , (3.1)

for all matrices - ∈ LS<,=(A, B, �).

In general,verifying that theRICsofameasurementoperatorarebounded
is practically an impossible task. In the case of the RICs for B-sparse vectors,
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this property requires the condition number of all B × B submatrices to be
bounded. Thus, there are

(<=
B

)
matrices whose spectral norm we have to

compute, which is computationally infeasible. The situation is even more
dire if we want to computationally verify an upper bound on the RICs for
low-rank matrices. While there is a finite number of support sets of B-sparse
vectors, in the case of low-rank matrices there is an infinite number of left
and right singular vectors.

Fortunately, as will be discussed in this chapter,many random projection
operators have theirRICs bounded. For example, it has been shown thatRICs
are bounded forGaussian randommatrices both in respect to the set of sparse
vectors (Candès and TaoCandès and Tao, 20052005; Baraniuk et al.Baraniuk et al., 20082008) and low-rank matrices
(Recht et al.Recht et al., 20102010). Moreover, Krahmer and WardKrahmer and Ward (20112011) proved that the
Fast Johnson-Lindenstrauss transform (FJLT) satisfies the concentration of
measure inequalities which also implies an upper bound on its RICs.

The chapter is organised as follows. The following §3.23.2 characterises the
class of suitable random linear mapsA : R<×= → R? that obey the concen-
tration of measure inequalities. In §3.33.3, we state the Johnson-Lindenstrauss
(JL) lemma and its connection to the RICs. In §3.43.4, we give the main result
that the RICs of random linear transforms satisfying the conditions given
in §3.23.2 and restricted to LS<,=(A, B, �) remain bounded independent of a
problem size provided the number of measurements ? is proportional to
O (A(< + = − A) + B) times a logarithmic factor. Finally, §3.53.5 summarizes the
chapter and §3.63.6 gives supporting lemmata used throughout the chapter.

3.2 nearly isometrically distributed maps

We begin by defining the class of random projectionsA : R<×= → R? which
have a sufficient concentration of measure phenomenon and are able to
project high dimensional points into a random lower-dimensional subspace
while preserving their pointwise distances. A suitable class of random linear
maps is captured in the following definition.

Definition 3.2 (Nearly isometrically distributed map). Let A be a random

variable that takes values in linear maps R<×= → R? . We say that A is nearly

isometrically distributed if, for ∀- ∈ R<×= ,

E
[
‖A(-)‖2

]
= ‖-‖2� (3.2)

and for all � ∈ (0, 1), we have

Pr
(��‖A(-)‖22 − ‖-‖2� �� ≥ �‖-‖2�

)
≤ 2 exp

(
−?2

(
�2/2 − �3/3

))
, (3.3)

and there exists some constant � > 0 such that for all C > 0, we have

Pr
(
‖A‖ ≥ 1 +

√
<=

?
+ C

)
≤ exp

(
−�?C2

)
. (3.4)
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There are two crucial properties for a randommap to be nearly isometric.
Firstly, it needs to be isometric in expectation as in (3.23.2), and exponentially
concentrated around the expected value as in (3.33.3). Secondly, the probability
of large distortions of length must be exponentially small as in (3.43.4). This
ensures that even after taking a union bound over an exponentially large cov-
ering number for LS<,=(A, B, �), see Lemma 3.43.4, the probability of distortion
remains small (Baraniuk et al.Baraniuk et al., 20082008; Recht et al.Recht et al., 20102010).

Examples of random ensembles of A which satisfy the conditions of
Definition 3.23.2 include random Gaussian ensemble which acquires the infor-
mation about the matrix - through ? linear measurements of the form

1ℓ := A(-)ℓ = 〈�(ℓ ) , -〉 for ℓ = 1, 2, . . . , ?, (3.5)

where the ? distinct sensing matrices �(ℓ ) ∈ R<×= are the sensing opera-
tors defining A and have entries sampled from the Gaussian distribution
as �(ℓ )

8 , 9
∼ N(0, 1/?). Other notable examples include symmetric Bernoulli

ensembles, and Fast Johnson-Lindenstrauss Transform (FJLT) introduced
by Ailon and ChazelleAilon and Chazelle (20092009). Krahmer and WardKrahmer and Ward (20112011) proved the concen-
tration inequalities for FJLT which are weaker compared to the Gaussian
sensing operator.

Note that applying a dense linear transform such as the one described
in (3.53.5) to an = × = matrix is extremely costly with the complexity O

(
?=2)

that is quartic in = when ? = O(=2). Devising fast transforms such as FJLT
that have complexity of O

(
=2 log(=2) + ?

)
is crucial for applications with

high-dimensional data such as large matrices or tensors (Jin et al.Jin et al., 20202020).
Another avenue of research are sparse sketching transforms that allow for
fast iterative updates (Kane and NelsonKane and Nelson, 20142014) and are generally used in
streaming applications.

3.3 connection to the johnson-lindenstrauss
lemma

The Johnson-Lindenstrauss (JL) lemma (Johnson and LindenstraussJohnson and Lindenstrauss, 19841984)
answers the following problem. We are given a set & ⊂ R= of # points with
the dimension = typically large. We would like to embed these points into
a lower-dimensional Euclidean space R? while approximately preserving
the relative distances between any of these points. The question we are
interested in is: How small can we make the dimension ? of the projected
points while approximately preserving their distances?

The JL lemma answers this question by stating that with high probability
the geometry of a point cloud is disturbed by some Lipschitz mapping onto
a space of dimension logarithmic in the number of points.

Lemma 3.1 (Johnson-Lindenstrauss lemma). Let � ∈ (0, 1) be given. For every
set& of# points inR= , if ? is a positive integer such that ? > ?0 = O

(
log(#)/�2)

,
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there exists a Lipschitz mapping 5 : R= → R? such that

(1 − �) ‖D − E‖22 ≤ ‖ 5 (D) − 5 (E)‖22 ≤ (1 + �) ‖D − E‖22 , (3.6)

for all D, E ∈ &.

There have been various improvements to the proof of this lemma
(Indyk and MotwaniIndyk and Motwani,19981998;AchlioptasAchlioptas,20032003;Dasgupta and GuptaDasgupta and Gupta,20032003;DonohoDonoho,
2006a2006a). In particular, there now exist simple proofs of the lemmawhich show
the mapping 5 can be represented by an ? × = matrix whose entries are
randomly drawn from some i.i.d. probability distribution. In fact,AchlioptasAchlioptas
(20032003) showed that any random variable satisfying certain moment condi-
tions is suitable andwill satisfy the conditions of the lemmawith a non-zero
probability.

In a nutshell, the proof of the JL lemma relies on showing that trans-
forms corresponding to suitable random matrices satisfy the conditions of
nearly isometrical random maps described in Definition 3.23.2. Subsequently, the
conditions of Definition 3.23.2 in combination with the union bound on the set
of all pair-wise differences of points D, E ∈ & prove the result.

In the context of compressed sensing, Baraniuk et al.Baraniuk et al. (20082008) showed that
the same properties of nearly isometrical random maps that allow for the proof
of the JL lemma can be also used to verify an upper bound on the RICs
for sparse vectors. This is done by constructing an �-net covering for the
set of B-sparse vectors and then applying the union bound. The work of
Recht et al.Recht et al. (20102010) applied the same technique combined with �-covering of
the Grassmannian manifold by SzarekSzarek (19831983) to prove that RICs of nearly
isometrical random maps are upper bounded also when restricted to the set
of low-rank matrices.

We are now ready to combine the two arguments of Baraniuk et al.Baraniuk et al. (20082008)
and Recht et al.Recht et al. (20102010), with a modification arising from the non-closedness
property discussed in Chapter 22, and prove that the RICs of nearly isometrical

random maps given in Definition 3.23.2 are also upper bounded when restricted
to matrices from the low-rank plus matrix set.

3.4 restricted isometry constants for
the set of low-rank plus sparse matrices

Linear maps A : R<×= → R? which have a sufficient concentration of
measure phenomenon can overcome the dimensionality of LS<,=(A, B, �) to
achieve ΔA,B,� given in Definition 3.13.1 which is bounded by a fixed value
independent of dimension size provided the number of measurements ? is
proportional to the degrees of freedom of a rank-A plus sparsity-B matrix
A(< + = − A) + B.

Theorem 3.1 (RICs for LS<,= (A, B, �)). For a given <, =, ? ∈ N, Δ ∈ (0, 1),
� ∈

[
1,
√
<=

A
√
B

)
, and a random linear transform A : R<×= → R? satisfying the
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concentration ofmeasure inequalities inDefinition 3.23.2, there exist constants 20 , 21 >

0 such that the RIC forLS<,=(A, B, �) is upper boundedwithΔA,B,�(A) ≤ Δ provided

? > 20 (A(< + = − A) + B) log

((
1 − �2 A

2B

<=

)−1/2
<=

B

)
, (3.7)

with probability at least 1−exp (−21?), where 20 , 21 are constants that depend only

on Δ.

Our proof of Theorem 3.13.1 follows from proving the alternative form of
(3.13.1) defined without the squared norms by(

1 − Δ̄A,B,�(A)
)
‖-‖� ≤ ‖A(-)‖2 ≤

(
1 + Δ̄A,B,�(A)

)
‖-‖� , (3.8)

which we denote as Δ̄. The discrepancy between (3.83.8) and (3.13.1) is due to (3.83.8)
being more direct to derive and (3.13.1) allowing for more concise derivation
of recovery results by computationally tractable methods in Chapter 44.

The two definitions are related, since Δ̄ satisfiying the inequalities in
(3.83.8) also implies(

1 − Δ̄
)2 ‖-‖2� ≤ ‖A(-)‖

2
2 ≤

(
1 + Δ̄

)2 ‖-‖2� , (3.9)

which in turn ensures that Δ in Definition 3.13.1 is Δ = 2Δ̄ − Δ̄2 and strictly
smaller than one for Δ ≤

√
2 − 1. For Δ̄ >

√
2 − 1, the squared RICs remain

bounded, but become asymetrical, with the constant in the lower bound
becoming Δ! = 2Δ̄ + Δ̄ while the constant in the upper bound remaining
Δ* = 2Δ̄ − Δ̄2.

The proof of Theorem 3.13.1 begins with the derivation of an RIC for a
single subspace Σ<,=(+,,, ), �) of LS<,=(A, B, �)when the column space of
Col (L) is restricted in the subspace+ , the row spaceCol

(
LT) in the subspace

, and the sparse component ( is in the subspace )

Σ<,= (+,,, ), �) =


- = ! + ( ∈ R<×= :

Col (L) ⊆ +, Col
(
LT) ⊆ ,,

supp (() ⊆ ),
∀8 ∈ [<] : ‖P+ 48 ‖2 ≤

√
�A
< ,

∀8 ∈ [=] : ‖P, 58 ‖2 ≤
√

�A
=


,

(3.10)

where P+ and P, denote the orthogonal projection on the subspace + and
, respectively, and 48 ∈ R< and 58 ∈ R= are the canonical basis vectors.

Note, that the conditions of ‖P+ 48 ‖2 ≤
√

�A
< and ‖P, 58 ‖2 ≤

√
�A
= combined

with Col (L) ⊆ + and Col
(
LT) ⊆ , imply that the coherence of the singular

vectors of the matrix ! is bounded by �.
Following the proof of the RIC for a single subspace, we show that the

isometry constant of A is robust to a perturbation of the column and the
row subspaces (+,,) of the low-rank component. Finally, we use a covering
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argument over all possible column and row subspaces (+,,) of the low-rank
component and count over all possible sparsity subspaces ) of the sparse
component to derive an exponentially small probability bound for the event
thatA(·) satisfies RIC with constant Δ̄ for sets

LS<,=(A, B, �) =
{
Σ<,=(+,,, ), �) : + ∈ G(<, A), , ∈ G(=, A),

) ∈ V(<=, B)

}
, (3.11)

where G(<, A) is the Grassmannian manifold—the set of all A-dimensional
subspaces of R< , andV(<=, B) is the set of all possible supports sets of an
< × = matrix that has B elements. Thus proving RIC for sets of low rank plus
sparse matrices given the bound on the Frobenius norm of the low-rank
component !.

The following result describes the behavior of A when constrained to
a single fixed column and a row space (+,,) and a single sparse matrix
space ).

Lemma 3.2 (RICs for a fixed LS subspaceΣ<,=(+,,, ), �)). LetA : R<×= →
R? be a nearly isometric random linearmap fromDefinition 3.23.2 andΣ<,= (+,,, ), �)
as defined in (3.103.10) is fixed for some (+,,, )), and � ∈

[
1,
√
<=

A
√
B

)
. Then for any

Δ̄ ∈ (0, 1)

∀- ∈ Σ<,= (+,,, ), �) : (1 − Δ̄)‖-‖� ≤ ‖A(-)‖ ≤ (1 + Δ̄)‖-‖� , (3.12)

with probability at least

1 − 2
(
24
Δ̄
�

)dim+ ·dim, (
24
Δ̄
�

)dim)

exp
(
−?2

(
Δ̄2

8 −
Δ̄3

24

))
, (3.13)

where � = 1
/√

1 − �2 A2B
<= .

The proof follows the same argument as the one for sparse vectors
(Baraniuk et al.Baraniuk et al., 20082008, Lemma 5.1) and for low-rank matrices in (Recht et al.Recht et al.,
20102010, Lemma 4.3). Our variant of the proof for low-rank plus sparse matrices
is presented in §3.63.6, page 5151.

To establish the impact of a perturbation of the subspaces (+,,) on the
Δ̄ in Lemma 3.23.2 we define a metric �(·, ·) on G(�, 3) as follows

*1 , *2 ∈ G(�, 3) : �(*1 , *2) := ‖P*1 − P*2 ‖ , (3.14)

where ‖P*1 − P*2 ‖ denotes the spectral norm of P*1 − P*2 . The Grassman-
nian manifold G (�, 3) combined with distance �(·, ·) as in (3.143.14) defines a
metric space (G (�, 3) , � (·, ·)), where P* denotes an orthogonal projection
associated with the subspace* . Let us also denote a set of matrices whose
column and row space is a subspace of + and, respectively

(+,,) =
{
- : Col (X) ⊆ +, Col

(
XT

)
⊆ ,

}
, (3.15)
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and P(+,,) is an orthogonal projection that ensures that the column space
and row space of P(+,,)- lies within + and , . The distance between
Σ1 := Σ<,= (+1 ,,1 , ), �) and Σ2 := Σ�

<,= (+2 ,,2 , ), �) that have a fixed ) is
given by

� ((+1 ,,1) , (+2 ,,2)) = ‖P(+1 ,,1) − P(+2 ,,2)‖. (3.16)

Lemma 3.3 (Variation of Δ̄ in RIC in respect to a perturbation of (+,,)).
Let Σ1 := Σ<,=(+1 ,,1 , ), �) and Σ2 := Σ<,=(+2 ,,2 , ), �) be two low-rank plus
sparse subspaces with the same fixed sparse subspace ) and � ∈

[
1,
√
<=

A
√
B

)
. Suppose

that for Δ̄ > 0, the linear operatorA satisfies

∀- ∈ Σ1 : (1 − Δ̄)‖-‖� ≤ ‖A(-)‖ ≤ (1 + Δ̄)‖-‖� . (3.17)

Then

∀. ∈ Σ2 : (1 − Δ̄′)‖.‖� ≤ ‖A(.)‖ ≤ (1 + Δ̄′)‖.‖� , (3.18)

with Δ̄′ := Δ̄ + �� ((+1 ,,1) , (+2 ,,2))
(
1 + Δ̄ + ‖A‖

)
with � as defined in (3.143.14)

and � = 1
/√

1 − �2 A2B
<= .

The proof is similar to the line of argument made in (Recht et al.Recht et al., 20102010,
Lemma 4.4), see the proof in §3.63.6, page 5454. The notable exception is the term
� appearing in the expression for Δ̄′, which is the result of the set LS<,=(A, B)
not being closed without the constraint ‖!‖� ≤ �‖-‖� (Tanner et al.Tanner et al., 20192019,
Theorem 1.1) but which is here guaranteed by Lemma 2.102.10 provided � <√
<=

A
√
B
.
To establish the proof of Theorem 3.13.1 we combine Lemma 3.23.2 and

Lemma 3.33.3 with an �-covering of the subspaces of LS<,=(A, B) which also
contains the subspaces of the set LS<,=(A, B, �), where � will be picked to
control the maximal allowed perturbation � ((+1 ,,1) , (+2 ,,2)) between
the subspaces. The covering number ℜ(�) of the subspaces of LS<,=(A, B) at
resolution � is the smallest number of subspaces (+8 ,,8 , )8) such that, for
any triple of + ∈ G(<, A),, ∈ G(=, A), ) ∈ V(<=, B) there exists 8 with
� ((+,,) , (+8 ,,8)) ≤ � and ) = )8 . The following Lemma 3.43.4 gives an
upper bound on the cardinality of the �-covering.

Lemma 3.4 (Covering number of the subspaces of LS<,=(A, B)). The covering
number ℜ(�) of the subspaces of the set LS<,=(A, B) is bounded above by

ℜ(�) ≤
(
<=

B

) (
4�
�

) A(<+=−2A)
. (3.19)

Consequently, by LS<,=(A, B, �) ⊂ LS<,=(A, B), we also obtained an upper bound on

the covering number for the subspaces of the set of incoherent low-rank plus sparse

matrices LS<,=(A, B, �).

The proof comes by counting the possible support sets with cardinality
B and by Theorem 8 of SzarekSzarek (19981998) on �-covering of the Grassmannian, for
completeness the proof is given in §3.63.6, page 5353.
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Bounds on the RICs for the set of low-rank plus sparse matrices then
followaproof technique thatuses the coveringnumberargument in combina-
tionwith the concentration ofmeasure inequalities as done byBaraniuk et al.Baraniuk et al.
(20082008) forsparsevectors andsubsequently for low-rankmatrices byRecht et al.Recht et al.
(20102010).

We now have the required theoretical background in place to prove the
main result of the chapter in the form of Theorem 3.13.1 restated here.

Theorem 3.1 (RICs for LS<,= (A, B, �)). For a given <, =, ? ∈ N, Δ ∈ (0, 1),
� ∈

[
1,
√
<=

A
√
B

)
, and a random linear transform A : R<×= → R? satisfying the

concentration ofmeasure inequalities inDefinition 3.23.2, there exist constants 20 , 21 >

0 such that the RIC forLS<,=(A, B, �) is upper boundedwithΔA,B,�(A) ≤ Δ provided

? > 20 (A(< + = − A) + B) log

((
1 − �2 A

2B

<=

)−1/2
<=

B

)
, (3.7)

with probability at least 1−exp (−21?), where 20 , 21 are constants that depend only

on Δ.

Proof. By linearity of A and conicity of LS<,=(A, B, �) assume without loss
of generality ‖-‖� = 1 and consequently also ‖!‖� ≤ � and ‖(‖� ≤ � with

� := 1
/√

1 − �2 A2B
<= by Lemma 2.102.10 and by � <

√
<=

A
√
B
.

Let (+8 ,,8 , )8) be an �-covering of the subspaces ofLS<,=(A, B), that is also
an �-covering of the subspaces of LS<,=(A, B, �), with the covering number
ℜ(�) bounded by Lemma 3.43.4. For every triple (+8 ,,8 , )8) define a subset of
matrices

ℬ8 = {- ∈ Σ<,= (+,,, )8 , �) : � ((+,,) , (+8 ,,8)) ≤ �} . (3.20)

By (+8 ,,8 , )8) being an �-covering of the subspaces and by the relation be-
tweenΣ<,=(+,,, ), �) andLS<,=(A, B, �) in (3.113.11),wehave thatLS<,=(A, B, �) ⊆⋃
8 ℬ8 . Therefore, if for all ℬ8 the following holds

(∀- ∈ ℬ8) : (1 − Δ̄)‖-‖� ≤ ‖A(-)‖ ≤ (1 + Δ̄)‖-‖� , (3.21)

then necessarily Δ̄A,B,� ≤ Δ̄, proving that

Pr(Δ̄A,B,� ≤ Δ̄) = Pr
(
∀- ∈ LS<,=(A, B, �) : (1 − Δ̄)‖-‖� ≤ ‖A(-)‖ ≤ (1 + Δ̄)‖-‖�

)
(3.22)

≥ Pr
(
(∀8), (∀- ∈ ℬ8) : (1 − Δ̄)‖-‖� ≤ ‖A(-)‖ ≤ (1 + Δ̄)‖-‖�

)
,

(3.23)

where the inequality comes from the fact that LS<,=(A, B, �) is a subset of⋃
8 ℬ8 and therefore the statement holds with less or equal probability. It

remains to derive a lower bound on the probability in the equation (3.233.23)
which in turn proves the theorem.
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In the case that ‖A‖ ≤ Δ̄
2�� − 1 − Δ̄

2 , which we show later in (3.263.26) occurs
with probability exponentially converging to one, rearranging the terms
yields

��(1 + Δ̄/2 + ‖A‖) ≤ Δ̄/2. (3.24)

If the RIC holds for a fixed (+8 ,,8 , )8) with Δ̄/2, then by Lemma 3.33.3 in
combination with (3.243.24) yields

(∀- ∈ ℬ8) : (1 − Δ̄)‖-‖� ≤ ‖A‖ ≤ (1 + Δ̄)‖-‖� . (3.25)

Therefore, using the probability union bound on (3.233.23) over all 8’s and the
probability of ‖A‖ satisfying the bound � ≤ Δ̄/(2� (1 + ‖A‖)).

Pr
(
(∀8), (∀- ∈ ℬ8) : (1 − Δ̄)‖-‖� ≤ ‖A(-)‖ ≤ (1 + Δ̄)‖-‖�

)
(3.26)

≥ 1 −
∑
8

Pr
(
∃. ∈ Σ<,=(+8 ,,8 , )8 , �) : ‖A(.)‖ < (1 − Δ̄/2)

or ‖A(.)‖ > (1 + Δ̄/2)

)
(3.27)

− Pr
(
‖A‖ ≥ Δ̄

2�� − 1 − Δ̄2
)
. (3.28)

The probability in (3.273.27) is bounded from above as∑
8

Pr
(
∃. ∈ Σ<,=(+8 ,,8 , )8 , �) : ‖A(.)‖ < (1 − Δ̄/2)

or ‖A(.)‖ > (1 + Δ̄/2)

)
(3.29)

≤ 2ℜ(�)
(
48
Δ̄
�

) A2 (
48
Δ̄
�

) B
exp

(
−
?

2

(
Δ̄2

32 −
Δ̄3

192

))
(3.30)

≤ 2
(
<=

B

) (
4�
�

) A(<+=−2A) (48
Δ̄
�

) A2+B
exp

(
−?2

(
Δ̄2

32 −
Δ̄3

192

))
, (3.31)

where in the first inequalitywe used Lemma 3.23.2 and in the second inequality
the bound on the �-covering of the subspaces by Lemma 3.43.4.

In order to complete the lower bound in (3.263.26) it remains to upper bound
(3.283.28) which we obtain by selecting the covering resolution � sufficiently
small so that the Pr

(
‖A‖ ≥ Δ̄

2�� − 1 − Δ̄
2

)
is exponentially small with the ex-

ponent proportional to the bound in (3.313.31). From condition (3.43.4) ofDefinition
3.23.2 we have that the random linear map satisfies

(∃� > 0) : Pr
(
‖A‖ ≥ 1 +

√
<=

?
+ C

)
≤ exp

(
−�?C2

)
, (3.32)

in particular

Pr
(
‖A‖ ≥ Δ̄

2�� − 1 − Δ̄2

)
≤ exp

(
−�?

(
Δ̄

2�� −
Δ̄

2 −
√
<=

?
− 2

)2)
. (3.33)

Selecting the covering resolution �

� <
Δ̄

4�
(√
<=/? + 1 + Δ̄/4

) , (3.34)
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obtains the following exponentially small upper bound

Pr
(
‖A‖ ≥ Δ̄

2�� − 1 − Δ̄2

)
≤ exp (−�<=) . (3.35)

Returning to the inequality (3.263.26), combined with the bound on the first
term in (3.313.31), and setting � = Δ̄

/ (
4�

(√
<=/? + 1 + Δ̄/4

))
in the second

term of (3.313.31), such that (3.343.34) is satisfied, we have that

2
( 4<=
B

) B (16�(
√
<=/? + 1 + Δ̄/4)

Δ̄
�

) A(<+=−2A) (
48
Δ̄
�

) A2+B

· exp
(
−?2

(
Δ̄2

32 −
Δ̄3

192

))
(3.36)

= exp

(
− ?0(Δ̄) + A (< + = − 2A) log

(√
<=

?
+ 1 + Δ̄4

)
+ A (< + = − 2A) log

(
16�
Δ̄

�

)
+ (A2 + B) log

(
48
Δ̄
�

)
+ B log

( 4<=
B

)
+ log(2)

)
, (3.37)

where we used the inequality
(<=
B

)
≤

(
4<=
B

) B and we define 0(Δ̄) := Δ̄2/64 −
Δ̄3/384. The 2=3, 3A3 and 4Cℎ terms in (3.373.37) can be bounded as

(∃22 > 0) : 2=3 + 3A3 + 4Cℎ ≤
(
22/0(Δ̄)

)
A(< + = − A) log

(
<=

?
�

)
, (3.38)

and the 5Cℎ and 6Cℎ term of (3.373.37) as

(∃23 > 0) : 5Cℎ + 6Cℎ ≤
(
23/0(Δ̄)

)
B log

(<=
B
�
)
, (3.39)

where 22 and 23 aredependentonlyon Δ̄. Therefore there exists apositive con-
stant 20 dependent only on Δ̄ such that if ? ≥ 20 (A(< + = − A) + B) log

(
<=
B �

)
,

then RICs are upper bounded by the constant Δ̄ with probability at least
e−20? . By the inequality in (3.93.9) on page 4545 and the discussion therein, the
result also implies an upper bound on RICs with the squared norms Δ in
Definition 3.13.1.

3.5 summary and discussion

In this chapter, we studied properties of random measurement operators
obeying concentration of measure inequalities when applied to low-rank
plus sparse matrices from the set LS<,=(A, B, �). We discussed the connection
of the concentration of measure inequalities to the Johnson-Lindenstrauss
lemma, which allows for a reduction of the dimensionality of a point cloud
without distorting the relative distances between individual points. We de-
fined the restricted isometry constants (RICs) of an operator, which translate
to a notion of an operator acting as an approximate isometrywhen restricted
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to the set of incoherent low-rank plus sparse matrices. The main result of
this chapter is Theorem 3.13.1 which says that measurement operators with a
sufficient concentration of measure phenomenon have their RICs bounded
independent of a problem size provided the number of measurements ?
is proportional to O (A (< + = − A) + B) times a logarithmic factor provided
� <

√
<=

A
√
B
. The theorem has important consequences in Chapter 44 where we

propose computational methods to recover low-rank plus sparse matrices
-0 ∈ LS<,=(A, B, �) from subsampledmeasurements 1 = A(-0) for operators
A whose RICs are bounded. Results of this chapter also illustrate how RICs
can be developed for more complex additive data models.

3.6 supporting lemmata

This section gives additional lemmata used in this chapter. What follows
is the proof of Lemma 3.23.2 that uses similar arguments as Lemma 5.1 by
Baraniuk et al.Baraniuk et al. (20082008) andLemma4.3 byRecht et al.Recht et al. (20102010)with the exception
that here we consider two subsets, one for the low rank and another for the
sparse component.

Lemma 3.2 (RICs for a fixed LS subspaceΣ<,=(+,,, ), �)). LetA : R<×= →
R? be a nearly isometric random linearmap fromDefinition 3.23.2 andΣ<,= (+,,, ), �)
as defined in (3.103.10) is fixed for some (+,,, )), and � ∈

[
1,
√
<=

A
√
B

)
. Then for any

Δ̄ ∈ (0, 1)

∀- ∈ Σ<,= (+,,, ), �) : (1 − Δ̄)‖-‖� ≤ ‖A(-)‖ ≤ (1 + Δ̄)‖-‖� , (3.12)

with probability at least

1 − 2
(
24
Δ̄
�

)dim+ ·dim, (
24
Δ̄
�

)dim)

exp
(
−?2

(
Δ̄2

8 −
Δ̄3

24

))
, (3.13)

where � = 1
/√

1 − �2 A2B
<= .

Proof. By the linearity ofA(·) andconicity ofΣ<,=(+,,, ), �)wecan assume
without loss of generality that ‖-‖� = 1. By Lemma 2.102.10 with ‖-‖� = 1 and
� <

√
<=

A
√
B
, we can bound the Frobenius norm of the low-rank and the sparse

component as ‖!‖� ≤ � and ‖(‖� ≤ �, where � = 1
/√

1 − �2 A2B
<= .

There exist twofinite (Δ̄/8)-coverings of the twomatrix setswithbounded
norms {

! ∈ R<×= : Col (L) ⊆ +, Col
(
LT

)
⊆ ,, ‖!‖� ≤ �

}
(3.40){

( ∈ R<×= : ( ⊆ ), ‖(‖� ≤ �
}
, (3.41)

that we denote Λ! ,Λ( and by (Lorentz et al.Lorentz et al., 19961996, Chapter 13) they are
subsets of the two sets in (3.403.40) and (3.413.41), and their covering numbers are
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upper bounded as��Λ!�� ≤ (
24
Δ̄
�

)dim+ ·dim, ��Λ(�� ≤ (
24
Δ̄
�

)dim)

. (3.42)

Let Λ :=
{
&! +&( : &! ∈ Λ! , &( ∈ Λ(

}
be the set of sums of all possi-

ble pairs of the two coverings. The set Λ is a (Δ̄/4)-covering of the set
Σ<,= (+,,, ), �) since for all - ∈ Σ<,= (+,,, ), �) there exists a pair& ∈ Λ
such that

‖- −&‖� =
! + ( − (

&! +&(
)
�

(3.43)

≤
! −&!


�
+

( −&(

�
≤ Δ̄8 +

Δ̄

8 , (3.44)

where in the first line we used the fact that - can be expressed as !+ (, and
in the second line we applied the triangular inequality combined with the
&! , &( being (Δ̄/8)-coverings of the matrix sets for the low-rank component
and the sparse component respectively.

Applying the probability union bound on concentration of measure of
A as in (3.33.3) with � = Δ̄/2 gives that

(∀& ∈ Λ) :
(
1 − Δ̄2

)
‖&‖� ≤ ‖A(&)‖2 ≤

(
1 + Δ̄2

)
‖&‖� , (3.45)

holds with the probability at least

1 − 2
(
24
Δ̄
�

)dim+ ·dim, (
24
Δ̄
�

)dim)

exp
(
−?2

(
Δ̄2

8 −
Δ̄3

24

))
. (3.46)

By Σ<,=(+,,, ), �) being a closed set, the maximum

" = max
.∈Σ<,=(+,,,),�), ‖.‖�=1

‖A(.)‖2 , (3.47)

is attained. Then there exists & ∈ Λ such that

‖A(-)‖2 ≤ ‖A(-)‖2 + ‖A(- −&)‖2 ≤ 1 + Δ̄2 +"
Δ̄

4 , (3.48)

where the first inequality comes from applying the triangle inequality to
- and & − - and in the second inequality we used (3.453.45) to upper bound
‖A(-)‖2 since (- − &) ∈ Σ<,=(+,,, ), �) by Lemma 2.92.9 and the upper
bound of ‖- − &‖� comes from & ∈ Λ combined with Λ being a (Δ̄/4)-
covering. Note that the inequality (3.483.48) holds for all - ∈ Σ<,=(+,,, ), �)
whose Frobenius norm ‖-‖� = 1 and thus also for a matrix -̂ for which the
maximum in (3.473.47) is attained. The inequality in (3.483.48) applied to the matrix
that attains the maximum -̂ yields

" ≤ 1 + Δ̄2 +"
Δ̄

4 =⇒ " ≤ 1 + Δ̄. (3.49)
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The lower bound follows from the reverse triangle inequality

‖A(-)‖2 ≥ ‖A(&)‖2 − ‖A(- −&)‖2 ≥
(
1 − Δ̄2

)
− (1 + Δ̄) Δ̄4 ≥ 1 − Δ̄ (3.50)

where the second inequality comes from ‖A(- −&)‖2 ≤ " ‖- −&‖� ≤(
1 + Δ̄

)
Δ̄
4 by (3.473.47) combined with & being an element of a (Δ̄/4)-covering.

Combining (3.483.48) with the bound on " in (3.493.49) gives the upper bound
and (3.503.50) gives the lower bound on ‖A(-)‖2 completing the proof.

The following result by SzarekSzarek (19981998) gives a covering number for the
Grassmanian. For proof see (SzarekSzarek, 19981998, Theorem 8).

Lemma 3.5 (�-covering of the Grassmannian). Let (G(�, 3), �(·, ·)) be a metric

space on a Grassmannian manifold G(�, 3) with the metric � as defined in (3.143.14).
Then there exists �-covering G(�, 3) with Λ = {*8}#8=1 ⊂ G(�, 3) such that

∀* ∈ G(�, 3) : min
*̂∈Λ

�(*, *̂) ≤ �, (3.51)

and # ≤
(
�0
�

)3(�−3)
with �0 independent of �, bounded by �0 ≤ 2�.

The above bound on the covering number of the Grassmannian is used to
bound the covering number of the setLS�<,=(A, B) in the proof of the following
Lemma 3.43.4.

Lemma 3.4 (Covering number of the subspaces of LS<,=(A, B)). The covering
number ℜ(�) of the subspaces of the set LS<,=(A, B) is bounded above by

ℜ(�) ≤
(
<=

B

) (
4�
�

) A(<+=−2A)
. (3.19)

Consequently, by LS<,=(A, B, �) ⊂ LS<,=(A, B), we also obtained an upper bound on

the covering number for the subspaces of the set of incoherent low-rank plus sparse

matrices LS<,=(A, B, �).

Proof. By Lemma 3.53.5 there exist two finite (�/2)-coverings Λ1 := {+8} |Λ1 |
8=1 ⊆

G(<, A) and Λ2 := {,8} |Λ2 |
8=1 ⊆ G(=, A), with their covering numbers upper

bounded as

|Λ1 | ≤
(
4�
�

) A(<−A)
|Λ2 | ≤

(
4�
�

) A(=−A)
, (3.52)

as given in (Recht et al.Recht et al., 20102010, (4.18)) that uses (SzarekSzarek, 19981998, Theorem 8). By
Λ1 ,Λ2 being (�/2)-coverings

∀+ ∈ G(<, A) : ∃+8 ∈ Λ1 , �(+,+8) ≤ �/2, (3.53)
∀, ∈ G(=, A) : ∃,8 ∈ Λ2 , �(,,,8) ≤ �/2. (3.54)
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Let Λ3 =V(<=, B)whereV(<=, B) is the set of all possible support sets of
an < × = matrix that has B elements. Thus the cardinality of Λ3 is

(<=
B

)
.

Construct Λ = (Λ1 × Λ2 × Λ3) where × denotes the Cartesian product.
Choose any + ∈ G(<, A),, ∈ G(=, A) and ) ∈ V(<=, B) for which we now
show there exists

(
+̂ , ,̂ , )̂

)
∈ Λ such that �

(
(+,,) ,

(
+̂ , ,̂

))
≤ � and

) = )̂, thus showing that the set Λ is an �-covering of LS<,=(A, B, �).
Satisfying ) = )̂ comes from Λ3 =V(<=, B) containing all support sets

with at most B entries. The projection operator onto the pair (+,,) can be
written as %(+,,) = %+ ⊗ %, , so for the two pairs of subspaces (+,,) and
(+̂ , ,̂)we have the following

�
(
(+,,) ,

(
+̂ , ,̂

))
= ‖%(+,,) − %(+̂ ,,̂)‖ (3.55)

= ‖%+ ⊗ %, − %+̂ ⊗ %,̂ ‖ (3.56)
= ‖

(
%+ − %+̂

)
⊗ %, + %+̂

(
%, − %,̂

)
‖ (3.57)

≤ ‖%+ − %+̂ ‖‖%, ‖ + ‖%+̂ ‖‖%, − %,̂ ‖ (3.58)

= �
(
+, +̂

)
+ �

(
,, ,̂

)
. (3.59)

By Λ1 and Λ2 being (�/2)-coverings, we have that for any +,, exist +̂ ∈ Λ1

and ,̂ ∈ Λ2, such that �
(
(+,,) ,

(
+̂ , ,̂

))
≤ �

(
+, +̂

)
+ �

(
,, ,̂

)
≤ �.

Using the bounds on the cardinality of Λ1 ,Λ2 in (3.523.52) combined with
|Λ3 | =

(<=
B

)
yields that the cardinality of Λ is bounded above by

ℜ(�) = |Λ1 | |Λ2 | |Λ3 | ≤
(
<=

B

) (
4�
�

) A(<+=−2A)
. (3.60)

Lemma 3.3 (Variation of Δ̄ in RIC in respect to a perturbation of (+,,)).
Let Σ1 := Σ<,=(+1 ,,1 , ), �) and Σ2 := Σ<,=(+2 ,,2 , ), �) be two low-rank plus
sparse subspaces with the same fixed sparse subspace ) and � ∈

[
1,
√
<=

A
√
B

)
. Suppose

that for Δ̄ > 0, the linear operatorA satisfies

∀- ∈ Σ1 : (1 − Δ̄)‖-‖� ≤ ‖A(-)‖ ≤ (1 + Δ̄)‖-‖� . (3.17)

Then

∀. ∈ Σ2 : (1 − Δ̄′)‖.‖� ≤ ‖A(.)‖ ≤ (1 + Δ̄′)‖.‖� , (3.18)

with Δ̄′ := Δ̄ + �� ((+1 ,,1) , (+2 ,,2))
(
1 + Δ̄ + ‖A‖

)
with � as defined in (3.143.14)

and � = 1
/√

1 − �2 A2B
<= .

Proof. Recall the notation used in Lemma 3.33.3 that there are sets Σ1 :=
Σ�
<,= (+1 ,,1 , )) and Σ2 := Σ�

<,= (+2 ,,2 , )) which are subsets of LS�<,=(A, B)
with a shared support ) of the sparse component.

Let . ∈ Σ2, so we can write . = ! + ( such that supp(() = ),Col (L) ⊆
+2 ,Col

(
LT) ⊆ ,2 and ‖!‖� ≤ �‖-‖�. By linearity of A assume without
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loss of generality ‖.‖� = 1 and therefore ‖!‖� ≤ �. Denote *1 = (+1 ,,1)
and *2 = (+2 ,,2) and let %*8

be an orthogonal projection onto the space
of matrices whose column and row space is defined by +8 ,,8 such that left
and right singular vectors of %*8

. lie in +8 respectively,8 . Then

‖A(.)‖ = ‖A(! + ()‖ = ‖A (%*1! + ( − (%*1! − %*2!))‖ (3.61)
≤ ‖A (%*1! + ()‖ + ‖A ([%*1 − %*2] !)‖ (3.62)
≤ (1 + Δ̄) ‖%*1! + (‖ + ‖A‖� (*1 , *2) ‖!‖ (3.63)
= (1 + Δ̄) ‖%*2! + ( + [%*1 − %*2] !‖ + ‖A‖� (*1 , *2) ‖!‖ (3.64)
≤ (1 + Δ̄) (‖.‖� + �(*1 , *2)‖!‖) + ‖A‖� (*1 , *2) ‖!‖ (3.65)
≤ ‖.‖�

(
1 + Δ̄ + ��(*1 , *2)

(
1 + Δ̄ + ‖A‖

) )
, (3.66)

where in the first line (3.613.61) we use the fact that %*2! = !, the second line
(3.623.62) follows by the triangle inequality and linearity ofA, and in the third
inequality we bound the effect of A on (%*1! + () using the RICs of A
combined with the definition of � in (3.143.14). We proceed in (3.643.64) and (3.653.65)
by projecting ! to space*2 and again bounding the effect ofA on (%*2!+().
Finally, in (3.663.66) we use ‖!‖� ≤ �. We obtain a similar lower bound using
the reverse triangular inequality

‖A(.)‖ = ‖A (%*1! + ( − (%*1! − %*2!))‖ (3.67)
≥ ‖A (%*1! + ()‖ − ‖A ([%*1 − %*2] !)‖ (3.68)
≥

(
1 − Δ̄

)
‖%*1! + (‖ − ‖A‖�(*1 , *2)‖!‖� (3.69)

=
(
1 − Δ̄

)
‖%*2! + ( − [%*2 − %*1] !‖ − ‖A‖�(*1 , *2)‖!‖� (3.70)

≥
(
1 − Δ̄

)
(‖.‖� − �(*1 , *2)‖!‖�) − ‖A‖�(*1 , *2)‖!‖� (3.71)

≥ ‖.‖�
(
1 − Δ̄ − ��(*1 , *2)(1 − Δ̄ + ‖A‖)

)
. (3.72)
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Combining (3.663.66) and (3.723.72) yields

∀. ∈ Σ2 : (1 − Δ̄′)‖.‖� ≤ ‖A(.)‖ ≤ (1 + Δ̄′)‖.‖� , (3.73)

with Δ̄′ = Δ̄ + ��(*1 , *2)
(
1 + Δ̄ + ‖A‖

)
.
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4algorithms for low-rank
plus sparse matrix sensing

synopsis

In this chapter, we show that incoherent low-rank plus sparse
matrices can be recovered by computationally tractable meth-
ods with sample complexity ? > O(A(< + = − A) + B) times a
logarithmic factor when the number of corruptions is less than
<=/(�2A2), which is equivalent to the optimal order of the num-
ber of corruptions in the Robust PCA literature. We show that
an upper bound on the restricted isometry constants (RICs) of
an operator implies uniqueness of the solution to the problem of
incoherent matrix recovery. Additionally, we show that semidef-
inite programming and two gradient descent algorithms, NIHT
and NAHT, converge to the measured matrix provided the RICs
of the measurement operator are sufficiently small. The convex
relaxation and NAHT also provably solve Robust PCA with the
optimal sparsity bound when the sensing operator is chosen to
be the identity. We perform numerical experiments in which we
observe a phase transition in the space of parameters for which
themethods succeed.We also provide two exemplar applications
on dynamic-foreground/static-background separation and mul-
tispectral imaging.

4.1 introduction

While the preceding chapters have focused on the theoretical properties of
low-rank plus sparse matrix sets and random linear maps acting on them,
the central objective of this chapter is practical: Our goal is to devise a com-
putationally practical way of recovering an unknown low-rank plus sparse
matrix -0 given a vector of measurements 1 = A(-0) and a subsampling
operatorA : R<×= → R? .

The task is a mixture of a compressed sensing and a low-rank matrix sensing

problem, which deal with the recovery of sparse and of low-rank matrix re-
spectively, froma limitednumberofmeasurements. The additional challenge
of the combined problem of recovering a matrix with the additive structure
of a low-rank and a sparse matrix comes in the difficulty of distinguishing
between the two components.
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Solving compressed sensing and matrix sensing problems is gener-
ally NP-hard, see (Foucart and RauhutFoucart and Rauhut, 20132013, §2.3) and (Harvey et al.Harvey et al., 20062006;
Hardt et al.Hardt et al., 20142014) respectively. However, it is well known that in many cases
both compressed sensing and matrix sensing can be efficiently solved. No-
tably, if the measurement operator has its restricted isometry constants (RIC)
sufficiently upper bounded as discussed in Chapter 33, the non-convexity can
be overcome by computationally tractable methods.

There is now awide body of literature of compressed sensing andmatrix
sensing algorithms many of which have provable convergence guarantees
and come with fast software implementations. Most of the methods fall into
one of the two categories:
(i) Convex relaxation approach is based on formulating a convex opti-

misation problem that shares the same global minimum with the
non-convex problem. The convex relaxation approach relies on ap-
proximating the non-convex function with its convex envelope. The

The convex envelope of a non-
convex function.

convex envelope of a (possibly non-convex) function 5 : C → R is de-
fined as the largest convex function 6 : C → R such that 6(G) ≤ 5 (G)
for all G ∈ C. This means, that if 6 can be conveniently evaluated, it
serves as an approximation to 5 that can be minimized efficiently.
Subsequently, a number of algorithms provably converge to a global
minimum of the convex problem.

(ii) Non-convex approach solves the recovery problem directly in its
non-convex formulation. Non-convex approaches are computa-
tionally faster and in some cases are empirically observed to be
able to recover matrices of higher ranks than the convex methods
(Blanchard et al.Blanchard et al., 20152015).

For ease of reference:

LS<,=(A, B, �) =

- = ! + ( :
rank(!) ≤ A,
‖(‖0 ≤ B,

‖*) 48 ‖2 ≤
√

�A
< ,

‖+) 58 ‖2 ≤
√

�A
=


where ! = *Σ+) .

∀- ∈ LS<,=(A, B, �):

(1 − Δ)‖-‖2�
≤ ‖A(-)‖22 ≤
(1 + Δ)‖-‖2� ,

where Δ := ΔA,B,�(A)
is the RIC of A and
� <

√
<=

A
√
B
.

The challenge in designing an algorithm for recovery of a sparse or a low-
rank solution is two-fold: (i) overcoming the non-convex geometry and (ii)
proving it converges to aminimum.While in the convex relaxation approach,
these two aspects are dealt with separately, the non-convex techniques tackle
them jointly, as a part of a single convergence analysis.

The task of recovering a matrix that is formed as the sum of a low-rank
and a sparse matrix comes with the additional difficulty of distinguishing
between the two components which can become correlated. Recall the
central topic of Chapter 22, that there can be sequences of low-rank plus
sparsematrices converging outside of the feasible setwhile both components
become correlated and their norm diverges. The issue can be alleviated by
closing the set by restraining the Frobenius norm of the low-rank component
as stated in Definition 1.11.1, page 88. The task is then to find - such that

A(-) = 1 and - ∈ LS<,=(A, B, �), (4.1)

whereA : R<×= → R? is the subsampling operator and 1 ∈ R? is the vector
of measurements.
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For a linear transformA which has its RIC suitably upper bounded and
a given vector of samples 1 = A(-0), the matrix -0 is the only matrix in the
set LS<,=(A, B, �) that satisfies the linear constraint.

Theorem 4.1 (Existence of a unique solution forA with RIC). Suppose that
Δ2A,2B,�(A) < 1 for some integers A, B ≥ 1 and � <

√
<=/

(
A
√
B
)
. Let 1 = A(-0),

then -0 is the only matrix in the set LS<,=(A, B, �) satisfyingA(-) = 1.

Proof. Assume, on the contrary, that there exists a matrix - ∈ LS<,=(A, B, �)
such that A(-) = 1 and - ≠ -0. Then / := -0 − - is a non-zero matrix
and / ∈ LS<,=(2A, 2B, �) by Lemma 2.92.9 and A(/) = 0. But then by the
RIC we would have 0 = ‖A(/)‖22 ≥ (1 − Δ2A,2B,�) ‖/‖2� > 0, which is a
contradiction.

The unique low-rank plus sparse matrix -0 can be recovered by the
non-convex optimisation

min
-∈R<×=

‖A(-) − 1‖� , s.t. - ∈ LS<,=(A, B, �). (4.2)

Same as in compressed sensing and matrix sensing, the problem in (4.24.2)
is NP-hard. This follows from the non-convexity of the feasible set of low-
rank plus sparse matrices. However, if the RIC ofA are sufficiently upper-
bounded when restricted to matrices in LS<,=(A, B, �), then the solution
can be obtained by two iterative gradient descent algorithms, Normalized
Iterative Hard Thresholding (NIHT) and Normalized Alternating Hard
Thresholding (NAHT), which provably converge to a global minimum of
(4.24.2). Alternatively, -0 can be recovered by solving the convex relaxation Our use of ‖ · ‖1 as the sum of

the modulus of the entries of
a matrix differs from the vec-
tor induced 1-norm of a ma-
trix.

min
-=!+(∈R<×=

‖!‖∗ + � ‖(‖1 , s.t. ‖A(! + () − 1‖2 ≤ �1 , (4.3)

where ‖ · ‖∗ is the Schatten 1-norm and ‖ · ‖1 is the sum of the absolute value
of the entries and �1 is the model misfit.

The rest of this chapter is organised as follows. Firstly,we review themost
popular algorithmic approaches in compressed sensing and low-rankmatrix
sensing in §4.24.2. In §4.34.3,we prove that low-rankplus sparsematrices can be re-
covered by solving the convex optimisation in (4.34.3). In §4.44.4,we introduce two
fast non-convex algorithms NIHT and NAHT, which are natural extensions
of algorithms developed for compressed sensing by Blumensath and DaviesBlumensath and Davies
(20102010) and matrix completion by Tanner and WeiTanner and Wei (20132013), and prove their
convergence to the global minimum of (4.24.2). In §4.54.5, we empirically study
the recovery of the average case on synthetic data by solving convex optimi-
sation and by the proposed gradient descent methods and observe a phase
transition in the space of parameters for which the methods succeed. We
give an example of two practical applications of the low-rank plus sparse
matrix recovery in the form of a subsampled dynamic-foreground/static-
background video separation and robust recovery of multispectral imagery
in §4.64.6.
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4.2 relation to prior algorithmic work

Herein we provide the reader with a brief overview of algorithmic ap-
proaches in compressed sensing, low-rank matrix sensing, and Robust PCA.

4.2.1 Compressed sensing algorithms

In compressed sensing, the convex envelope of the ℓ0-norm is the ℓ1-norm
leading to the following linear programming (LP) problem

min
G∈R=
‖G‖1 , s.t. A(G) = 1, (4.4)

refered to as Basis Pursuit (BP) (Chen et al.Chen et al., 20012001). The compressed sens-
ing relaxation in (4.44.4) can be solved by the simplex algorithm (DantzigDantzig,
19631963) which has a cubic complexity for the average case (BorgwardtBorgwardt, 19871987)
despite its worst-case complexity being exponential (Dantzig and ThapaDantzig and Thapa,
19981998). Cubic complexity is impractical in many applications where the sig-
nal dimension is large. Chen and DonohoChen and Donoho (19941994) proposed the use of the
interior point method which solves a sequence of problems which converge
to the solution of (4.44.4). The interior point method has been improved upon
(Candès and RombergCandès and Romberg, 19951995; Kim et al.Kim et al., 20072007) but is still costly when the
A(·) is dense which is often the case in compressed sensing.

The most successful methods for ℓ1-minimization are gradient meth-
ods that alternate between the competing goals of satisfying the linear
constraint and minimizing the sparsity promoting ℓ1-norm. Many itera-
tive soft-thresholding methods have been proposed for solving (4.44.4) un-
der different names, such as iterative thresholding (Daubechies et al.Daubechies et al., 20042004),
forward-backward splitting (Combettes and WajsCombettes and Wajs, 20052005), fixed-point itera-
tion (Hale et al.Hale et al., 20082008), and sparse reconstruction by separable approxima-
tion (SpaRSA) (Wright et al.Wright et al., 2009b2009b). Convergence analysis of these methods
often relies on taking small gradient steps, whereas in practice, the optimal
performance is attained by taking large steps, for example as the Barzilai-
Borwein criterion (Wright et al.Wright et al., 2009b2009b). The convergence can be sped up by
taking into the account the information from the previous steps,which leads
to two-step IST (TwIST) (Bioucas-Dias and FigueiredoBioucas-Dias and Figueiredo, 20072007), and even faster
global convergence rate is observed and proved by the fast IST algorithm
(FISTA) (Beck and TeboulleBeck and Teboulle, 20092009).

A number of greedy algorithms that solve directly the non-convex op-
timisation over the feasible set of sparse vectors have been proposed. Con-
vergence analysis of non-convex optimisation is hindered by the fact that
algorithms might encounter local minima and saddle points. Despite the
non-convexity, many iterative gradient schemes can be showed to prov-
ably converge to a global minimum if the measurement operator RICs are
sufficiently upper bounded. An early example of such an algorithm is Com-
pressive Sampling Matching Pursuit (CoSaMP), which solves a sequence
of least-squares problems supported on the indices of the largest residual
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absolute values (Needell and TroppNeedell and Tropp, 20092009). Blumensath and DaviesBlumensath and Davies (20092009)
show that a simple iterative hard thresholding algorithm (IHT), that alter-
nates between minimizing the objective and projecting the estimates on the
non-convex constraint, provably converges to a global minimum with fixed
step sizes and if the RICs are sufficiently bounded. The ideas of CoSAMP
and IHT were combined by FoucartFoucart (20112011) who designs Hard Thresholding
Pursuit (HTP) which has faster empirically convergence and more relaxed
bound on the RICs guaranteeing the convergence.

The choice of the step size in hard-thresholding algorithms is crucial:
if the step size is too small, the algorithm converges very slowly, while
a step size too big, might not converge at all or hinder the convergence
analysis. An important innovation was made by Blumensath and DaviesBlumensath and Davies
(20102010), who suggested choosing a step size based on the assumption that the
support set of iterates does not change too much in subsequent iterations.
Tanner and WeiTanner and Wei (20132013) streamlined the convergence analysis and also pro-
posed an analogous method for matrix completion and matrix sensing. The
work of Blanchard et al.Blanchard et al. (20152015) extends this approach further and designs a
hard-thresholding version of a conjugate gradients method to compute not
only the optimal stepsize but also the optimal descent direction.

4.2.2 Matrix sensing/completion algorithms

FazelFazel (20022002) showed that the Schatten-1 norm, also referred to as the nuclear
norm, is the convex envelope of the rank function. The convex relaxation
of the low-rank matrix sensing is formulated in the following semidefinite

programming (SDP) problem

min
-∈R<×=

‖-‖∗ , s.t. A(-) = 1 (4.5)

and can be readily solved by a multitude of algorithms and software pack-
ages such as SDPT3 (Toh et al.Toh et al., 19991999) and SeDuMi (SturmSturm, 19991999) as part
of the modelling framework CVX (Grant and BoydGrant and Boyd, 20142014, 20082008) for Matlab.
However, to recover an = × = matrix, we have to solve an SDP with 2

(
=4)

variables that can have complexity as large as O
(
=6) making it infeasible for

even moderately large matrices (NesterovNesterov, 20042004).
A computationally faster way to solve the optimisation in (4.54.5) is to em-

ploy gradient descent algorithms. Cai et al.Cai et al. (20102010) introduced the Singular
Value Thresholding algorithm that alternates between a gradient descent
steps and a soft-thresholding operation on the singular values of the ma-
trix iterates. This method has been improved upon by Lin et al.Lin et al. (20092009) and
Toh and YunToh and Yun (20102010) who develop an acceleration strategy for the gradient
step. The work of Ma et al.Ma et al. (20112011) speeds up the soft-thresholding operation
by computing only an approximate SVD. However, all of the algorithms for
(4.54.5) apply the soft-thresholding operator which involves a costly computa-
tion of the full SVD in every iteration.
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The computationally fastest methods to the matrix sensing/completion
solve directly the non-convex formulation. Many of the algorithms are
analogous to their compressed sensing counterparts. These include the
Matrix ALPS family (Kyrillidis and CevherKyrillidis and Cevher, 20142014) and Atomic Decomposi-
tion for Minimum Rank Approximation (ADMiRA) (Lee and BreslerLee and Bresler, 20102010)
which is the matrix extension of the compressed sensing algorithm CoSaMP
(Needell and TroppNeedell and Tropp, 20092009). There are numerous other hard-thresholding al-
gorithms based on the fact that a set of fixed-rank matrices forms the Grass-
mannian manifold (Keshavan et al.Keshavan et al., 20102010; Meyer et al.Meyer et al., 20112011; VandereyckenVandereycken,
20132013). Tanner and WeiTanner and Wei (20132013) proposed a hard-thresholding algorithm that
adaptively finds the optimal step-size based the singular vectors of previ-
ous matrix iterates. Blanchard et al.Blanchard et al. (20152015) extend this approach and design
a hard-thresholding version of a conjugate gradients method to compute
not only the optimal stepsize but also the optimal descent direction. An-
other popular approach is to parameterise the set of low-rank matrices
through a rank enforcing factorisation, which avoids the need to compute an
SVD altogether. Examples of such algorithms include Power Factorization
(Haldar and HernandoHaldar and Hernando, 20092009), Low-Rank Matrix Fitting (Wen et al.Wen et al., 20122012),
and Alternating Steepest Descent (Tanner and WeiTanner and Wei, 20162016).

See the review by Davenport and RombergDavenport and Romberg (20162016) for a comprehensive
survey of low-rank matrix completion and sensing algorithms.

4.2.3 Robust PCA algorithms

Robust PCA is closely related to the low-rank plus sparse matrix sensing
problem. The only difference is that while in the former we have access
to the full matrix -0, in the latter we have access only to the subsampled
measurements 1 = A(-0).

The early algorithms for Robust PCA were based on various heuristics
to identify the support of the corrupted entries that form the matrix (,
however these methods lack convergence guarantees (Torre and BlackTorre and Black, 20012001,
20032003). The advances in compressed sensing and matrix sensing/completion
motivated the work of Candès et al.Candès et al. (20112011) andChandrasekaran et al.Chandrasekaran et al. (20112011),
who analysed the convex relaxation of the original problem as posed in (1.131.13)
on page 88,

min
-=!+(∈R<×=

‖!‖∗ + � ‖(‖1 , s.t. ! + ( = ", (4.6)

andproved guarantees for exact recovery of ! and ( provided the incoherence See §2.22.2, Definition 2.12.1 of
the incoherence parameter �,
Definition 2.22.2 of the sparsity

ratio parameter  and the
discussion on regularisation
therein.

parameter � of the low-rank component is sufficiently small and with some
additional assumptions on the sparsity ratio parameter  for the sparse
component.

Naively solving the convex relaxation (4.64.6) by semidefinite programming
methods is too costly. Candès et al.Candès et al. (20112011) proposed the Principal Compo-
nent Pursuit (PCP) algorithm for solving the convex relaxation of Robust
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PCA problem as formulated in (4.64.6). Although, the convex approach prov-
ably decomposes the low-rank plus sparsematrix, PCP comeswith twomain
shortcomings. Firstly, it does not account for an error that might be present
in every entry of the matrix, e.g. Gaussian noise. Secondly, PCP is computa-
tionally expensive, requiring computing Singular Value Decomposition in
every iteration, leading to the time complexity of O(<2=) per iteration and
will typically require O(1/�) iterations (Candès et al.Candès et al., 20112011), where � is the
required tolerance on the relative error of the solution.

The limitations of the convex relaxation and thePCPalgorithmmotivated
work on computationally fastermethods. Zhou et al.Zhou et al. (20102010) extend the result
of Candès et al.Candès et al. (20112011) to account for Gaussian noise present in all entries of
the matrix. A general framework for minimization of a sum of two convex
functions is proposed by Goldfarb et al.Goldfarb et al. (20132013) who are able to improve
convergence by reducing the number of iterations to O(1/

√
�) instead of

O(1/�). Wang et al.Wang et al. (20132013) propose using Alternating Direction Method of
Multipliers (ADMM) for solving a two block-separable convexminimization
problem and numerically demonstrate that their ADMM outperforms PCP
in practice, but it lacks theoretical recovery guarantees. On the other hand,
work of Mu et al.Mu et al. (20112011) is able to minimize the nuclear norm of a randomly
sketched matrix !, resulting in cheaper computation of SVD for smaller,
projected matrix, while preserving theoretical guarantees for exact recovery
with high-probability.

More recently, a number of faster non-convex algorithms with conver-
gence guarantees have been proposed (Gu and WangGu and Wang, 20162016; Netrapalli et al.Netrapalli et al.,
20142014; Yi et al.Yi et al., 20162016; Chen and WainwrightChen and Wainwright, 20152015) for the non-convex optimi-
sation problem formulated in (1.131.13) on page 88.

Gu and WangGu and Wang (20162016) reformulate the problem using a low-rank factori-
sation with* ∈ R<×A , + ∈ RA×= plus a sparse matrix ( ∈ R<×=

min
*∈R<×A , +∈R=×A , (∈R<×=

" − (*+) + ()
2
, s.t. ‖(‖0 ≤ B, (4.7)

which they minimise in an alternating fashion and prove exact recovery for
sparsity ratio  = O

(
1/

(
�2/3A1/3=

))
where � is the incoherence parameter

of !. The result is improved by Yi et al.Yi et al. (20162016), who show recovery guarantee
for nearly the optimal sparsity  = O(1/(�A1.5)) in a deterministic model,
with the optimal sparsity ratio being  = O(1/(�A)) (Chen and WainwrightChen and Wainwright,
20152015). Their algorithm requires only one imprecise computation of SVD
per iteration, which is then followed by a two gradient steps due to the
splitting ! = *+ and converges linearly in a noise-free setting. Step-size
is chosen extremely conservative in the proof section, but in numerical
section a different, less conservative, step-size is used which results into
faster convergence rate. The optimal sparsity  = O(1/(�A)) for deterministic
model was achieved by Netrapalli et al.Netrapalli et al. (20142014), whose Alternating Projection

(AltProj) has an approximate complexity ofO
(
�A2= log(=)2 log(1/�)2

)
. Their
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approach performs alternating projections on the set of low-rank and sparse
matrices performed by the truncated SVD and hard thresholding.

See (Bouwmans et al.Bouwmans et al., 20172017) for a detailed survey on Robust PCA and
publicly available implementation of Robust PCA algorithms.

4.2.4 Summary

To summarize, the convex relaxation approach is a powerful modelling
framework. Its strength lies in its interpretative ability to approximate the
non-convex geometry of the original optimisation problem. Its main disad-
vantage comes from the computation, namely that the convex envelope can
be computationally costly to evaluate and that we are forced to optimise
over a larger feasible set, e.g. all matrices instead of only low-rank matrices.
There have been recent advances in fast algorithms for solving SDPs such as
(4.54.5) based on sketching and low-rank parametrizations by Yurtsever et al.Yurtsever et al.
(20192019) but these have not been yet explored in the context of compressed
sensing and low-rank matrix sensing.

4.3 recovery by convex relaxation

This section contains the proofs of our first main algorithmic contribution
that a low-rank plus sparse matrix -0 ∈ LS<,=(A, B, �) can be robustly recov-
ered from subsampledmeasurements taken by a linearmappingA(·)which
satisfies given bounds on its RIC by solving the convex relaxation in (4.34.3).

Let -∗ = !∗ + (∗ be the solution of the convex optimization problem
formulated in (4.34.3). Here it is shown that if the RICs of the measurement
operatorA(·) are sufficient small, then -∗ = -0 when the linear constraint
in the convex optimization problem (4.34.3) is satisfied exactly, or alternatively
that ‖-∗ − -0‖� is proportional to ‖A(-∗) − 1‖2.

Theorem 4.2 (Guaranteed recovery by the convex relaxation). Let 1 = A(-0)
and suppose that A, B ∈ N and � <

√
<=/

(
4A
√

3B
)
are such that the restricted

isometry constant Δ4A,3B,�(A) ≤ 1
5 − 5

3�4A,3B,�. Let -∗ = !∗ + (∗ be the solution of

(4.34.3) with � =
√
A/B, then ‖-∗ − -0‖� ≤ 67�1 .

Proof. Let ' = -∗ − -0 = (!∗ − !0) + ((∗ − (0) = '! + '( be the residual
split into the low-rank component '! = !∗ − !0 and the sparse component
'( = (∗ − (0. We treat '! and '( separately, combining the method of proof
used in the context of compressed sensing by Candès et al.Candès et al. (2006b2006b) and its
extension for the low-rank matrix recovery by Recht et al.Recht et al. (20102010).

By Lemma 4.14.1 on page 8686 there exist matrices '!0 , '
!
2 ∈ R<×= such that

'! = '!0 + '!2 and

rank('!0 ) ≤ 2A (4.8)
!0('!2 )) = 0<×< and !)0'

!
2 = 0=×= . (4.9)
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Similarly, by the argument made in the proof of Theorem 1 by Candès et al.Candès et al.
(2006b2006b), which we state in §4.84.8 on page 8686 as Lemma 4.24.2, there exist matrices
'(0 , '

(
2 ∈ R<×= such that '( = '(0 + '(2 and'(00 ≤ B (4.10)

supp ((0) ∩ supp
(
'(2

)
= ∅. (4.11)

By (!∗ , (∗) being a minimum and -0 being feasible of the convex opti-
mization problem (4.34.3)

‖!0‖∗ + � ‖(0‖1 ≥ ‖!∗‖∗ + � ‖(∗‖1 (4.12)
=

!0 + '!0 + '
!
2


∗ + �

(0 + '(0 + '
(
2


1 (4.13)

≥
!0 + '!2


∗ −

'!0∗ + � (0 + '(2


1 − �
'(01 (4.14)

= ‖!0‖∗ +
'!2 ∗ − '!0∗ + � ‖(0‖1 + �

'(2 1 − �
'(01 ,

(4.15)

where the second line comes from !∗ − !0 = '
!
0 + '!2 and (∗ − (0 = '

(
0 + '(2 ,

the inequality in the third line comes from the reverse triangle inequality,
and the fourth line comes from the construction of'!2 and'(2 combinedwith
(Recht et al.Recht et al., 20102010, Lemma 2.3), restated as Corollary 4.14.1, and by supp('(2 ) ∩
supp('(0 ) = ∅. Subtracting ‖!0‖∗ and ‖(0‖1 from both sides of (4.154.15) and
rearranging terms yields'!2 ∗ + � '(2 1 ≤

'!0∗ + � '(01 . (4.16)

We proceed by decomposing the remainder terms '!2 and '(2 as sums
of matrices with decreasing energy as was done by Recht et al.Recht et al. (20102010) for
low-rank matrices and by Candès et al.Candès et al. (2006b2006b) for sparse vectors. Let '!2 =
*diag(�)+) be the singular value decomposition of '!2 and split the indices
of the singular values into sets of size "A as

�8 := {(8 − 1)"A + 1, . . . , 8"A} . (4.17)

Constructing '!
8

:= *�8diag(��8 )+)
�8
decomposes '!2 into a sum '!2 = '!1 +

'!2 + . . . such that

rank
(
'!8

)
≤ "A , ∀8 ≥ 1 (4.18)

'!8

(
'!9

))
= 0<×< and

(
'!8

))
'!9 = 0=×= , ∀8 ≠ 9 (4.19)

�: ≤
1
"A

∑
9∈�8

�9 , ∀: ∈ �8+1 (4.20)

where the inequality (4.204.20) implies that
'!

8+1

2
�
≤ 1

"A

'!
8

2
∗ .

Similarly, order the indices of '(2 as E1 , E2 , . . . , E<= ∈ [<] × [=] in de-
creasing order of magnitude of the entries of '(2 and split the indices of the
entries into sets of size "B as

)8 := {Eℓ : (8 − 1)"B ≤ ℓ ≤ 8"B} , (4.21)
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Constructing '(
8

:=
(
'(2

)
)8
decomposes '(2 into a sum '(2 = '(1 + '

(
2 + . . .

such that '(8 0 ≤ "B , ∀8 ≥ 1 (4.22)

∅ = )8 ∩ )9 , ∀8 ≠ 9 (4.23)��'(2 ��(E) ≤ 1√
"B

∑
9∈)8

��'(8 ��(9) , ∀E ∈ )8+1 (4.24)

where the inequality (4.244.24) implies that
'(

8+1

2
�
≤ 1

"B

'(
8

2
1. Combining the

two decompositions of '!2 and '(2 gives the following bound∑
9≥2

'!9 + '(9 
�
≤

∑
9≥2

'!9 
�
+

∑
9≥2

'(9 
�

(4.25)

≤
√

1
"A

∑
9≥1

'!9 ∗ +
√

1
"B

∑
9≥1

'(9 1
(4.26)

=

√
1
"A

'!2 ∗ +√
1
"B

'(2 1 (4.27)

≤
√

1
"A

('!0∗ +√
"A

"B

'(01

)
(4.28)

≤
√

2A
"A

'!0� +√
B

"B

'(0� , (4.29)

where the inequality in the first line comes from the triangle inequality, the
second inequality comes as a consequence of (4.204.20) and (4.244.24), the third line
comes from (4.194.19) combinedwith (Recht et al.Recht et al., 20102010, Lemma 2.3), restated as
Corollary 4.14.1, and from (4.234.23), the fourth inequality comes from (4.164.16) with
� =

√
"A/"B , and the last fifth line is a property of ℓ1 and Schatten-1 norms.

Choosing "A = A and "B = B in (4.294.29) gives∑
9≥2

'!9 + '(9 
�
≤
√

2
'!0� + '(0� , (4.30)

and also that � =
√
A/B as stated in the theorem.

By feasibility of -∗ and linearity ofA we have

�1 ≥ ‖A (-∗) − 1‖2 = ‖A (-∗ − -0)‖2 = ‖A (')‖2 . (4.31)

Let Δ := Δ4A,3B,� be the RIC with squared norms for LS<,=(4A, 3B, �) and
� := �4A,3A,� be the rank-sparsity correlation coefficient defined in Lemma 2.12.1
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on page 1717. Then

(1 − Δ)‖'!0 + '
!
1 ‖

2
� ≤

A (
'!0 + '

!
1

)2

2
=

��〈A('!0 + '!1 ), A('!0 + '!1 − ' + ')〉��
(4.32)

=
��〈A('!0 + '!1 ), A('!0 + '!1 − ')〉 + 〈

A('!0 + '
!
1 ), A(')

〉��
(4.33)

≤

������
〈
A

(
'!0 + '

!
1

)
, A ©«−'(0 − '(1 −

∑
9≥2

' 9
ª®¬
〉������

+
��〈A('!0 + '!1 ), A(')〉�� (4.34)

≤
(
Δ + 2�

1 − �2

) '!0 + '!1� ©«
'(0 + '(1� +∑

9≥2

' 9�ª®¬
+

A (
'!0 + '

!
1

)
2
‖A (')‖2 , (4.35)

where the inequality in the first line comes from '!0+'
!
1 ∈ LS<,=(4A, 3B, �) by

Lemma 2.92.9 satisfying the RICs, the second line is a consequence of feasibility
in (4.314.31), and the third line comes fromLemma 4.34.3 and by sums of individual
pairs in the inner product being in LS<,=(4A, 3B, �) by Lemma 2.92.9.

The first term in (4.354.35) can be bounded as(
Δ + 2�

1 − �2

) '!0 + '!1� ©«
'(0 + '(1� +∑

9≥2

' 9�ª®¬ (4.36)

≤
(
Δ + 2�

1 − �2

) '!0 + '!1� ('(0 + '(1� + √2
'!0� + '(0�)

(4.37)

≤
(
Δ + 2�

1 − �2

) '!0 + '!1� (
2
'(0 + '(1� + √2

'!0 + '!1�)
(4.38)

where the second line comes as a consequence of optimality in (4.304.30) with
"A = A and "B = B, and the third line comes from

'!0� ≤ '!0 + '!1�
and

'!1� ≤ '!0 + '!1�. The upper bound of the second term in (4.354.35) is
a consequence of feasibility bound in (4.314.31) and of the RIC for '!0 + '

!
1 ∈

LS<,=(4A, 3B, �) by Lemma 2.92.9A (
'!0 + '

!
1

)
2
‖A (') ‖2 ≤ �1(1 + Δ)‖'!0 + '

!
1 ‖� . (4.39)

Combining inequality (4.384.38) and (4.394.39) yields an upper bound of (4.354.35)

(1 − Δ)
'!0 + '!12

�
≤

(
Δ + 2�

1 − �2

) '!0 + '!1� (
2
'(0 + '(1� + √2

'!0 + '!1�)
+ �1

'!0 + '!1� (1 + Δ) ,
(4.40)
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which after dividing both sides by (1 − Δ)
'!0 + '!1� gives'!0 + '!1� ≤ 1

1 − Δ

(
Δ + 2�

1 − �2

) (
2
'(0 + '(1� + √2

'!0 + '!1�)+�1 1 + Δ
1 − Δ .
(4.41)

Mutatis mutandis, the same argument applies to
'(0 + '(1� (for details, see

Remark 4.14.1)'(0 + '(1� ≤ 1
1 − Δ

(
Δ + 2�

1 − �2

) ((
1 +
√

2
) '!0 + '!1� + '(0 + '(1�)+�1 1 + Δ

1 − Δ .
(4.42)

Adding (4.414.41) and (4.424.42) together'!0 + '!1� + '(0 + '(1� ≤ 1
1 − Δ

(
Δ + 2�

1 − �2

) ((
1 + 2
√

2
) '!0 + '!1� + 3

'(0 + '!(�)
+ 2�1

1 + Δ
1 − Δ . (4.43)

For Δ < 1
5 − 5

3� the prefactor 1
1−Δ

(
Δ + 2�

1−�2

)
< 1

4 and therefore also Δ
1−Δ < 1

4 ,
resulting into (4.434.43) being upper bounded as'!0 + '!1� + '(0 + '(1� ≤ 1 + 2

√
2

4
'!0 + '!1� + 3

4
'(0 + '(1� + 3�1 ,

(4.44)

The maximum of
'!0 + '!1� + '(0 + '(1� over the constraints given by the

inequality in (4.444.44) is attained when'!0 + '!1� + '(0 + '(1� = 3�1
3 − 2
√

2
. (4.45)

By orthogonality from construction in (4.194.19) and (4.234.23) we have that
3�1

3 − 2
√

2
≥

'!0 + '!1� + '(0 + '(1� (4.46)

≥
'!0� + '(0� (4.47)

≥ 1√
2
©«
∑
9≥2

' 9�ª®¬ (4.48)

≥ 1√
2

∑9≥2
' 9


�

=
1√
2
‖'2 − '1‖� , (4.49)

where the inequality in the third line comes from (4.304.30) and the inequality
in the fourth line comes from triangle inequality. Applying the triangle
inequality on ' =

(
'!0 + '

!
1
)
+

(
'(0 + '

(
1
)
+ ('2 − '1) and using the bounds

in (4.464.46) and (4.494.49) concludes the proof

‖'‖� ≤
'!0 + '!1� + '(0 + '(1� + ‖'2 − '1‖� (4.50)

≤ 3�1
1 +
√

2
3 − 2
√

2
≤ 67�1 . (4.51)
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4.4 recovery by non-convex algorithms

Alternatively,-0 can be obtained from its compressedmeasurementsA(-0)
by iterative gradient descent methods that are guaranteed to converge to a
global minimizer of the non-convex optimization problem

min
-=!+(∈R<×=

‖A(-) − 1‖2 , s.t. - ∈ LS<,=(A, B, �). (4.52)

We introduce twonatural extensions of the simple yet effectiveNormalized It-
erativeHardThresholding (NIHT) forcompressedsensing (Blumensath and DaviesBlumensath and Davies,
20102010) andmatrix completion (Tanner and WeiTanner and Wei, 20132013) algorithms, here called
NIHT and Normalized Alternative Hard Thresholding (NAHT) for low-
rank plus sparse matrices, Algorithm 11 and Algorithm 22 respectively. In
both cases we establish that if the measurement operator has suitably small
RICs then NIHT and NAHT provably converge to the global minimum of
the non-convex problem formulated in (4.524.52) and recover -0 ∈ LS<,=(A, B, �)
for which 1 = A(-0).

4.4.1 Normalized Iterative Hard Thresholding

We begin by analysing NIHT presented in Algorithm 11. The hard threshold-
ing projection in Algorithm 11 is performed by computing Robust PCAwhich
is solved to an accuracy proportional to �? as given by (4.554.55). The RPCA
projection of a matrix, ∈ R<×= on the set of LS<,=(A, B, �)with precision �

returns a matrix - ∈ LS<,=(A, B, �) such that

(!, () ← RPCAA,B,�(,, �?) s.t.
(! + () −,rpca


�
≤ �? , (4.53)

where,rpca := arg min.∈LS<,=(A,B,�) ‖. −, ‖� is the optimal projection of the
matrix, on the set LS<,=(A, B, �).

In order to achieve the recoverywith the asymptoticallyoptimalboundon
sparsity B = O

(
<=/

(
�2A2) ) , it is necessary to choose RPCA subroutine that

has similiarguarantees, e.g. theAlternating Projection algorithm (AltProj) by
Netrapalli et al.Netrapalli et al. (20142014) or the Accelerated Alternating Projection algorithm
(AccAltProj) by Cai et al.Cai et al. (20192019), both of which have provable global linear
convergence when B = O

(
<=/

(
�2A2) ) and high robustness in practice. For a

discussion on Robust PCA algorithms see §4.2.34.2.3 or (Bouwmans et al.Bouwmans et al., 20172017).
Note that the projection used in computing the stepsize is defined as

Proj(* 9 ,Ω9)
(
' 9

)
:= %* 9' 9 + 1Ω9 ◦ (' 9 − %* 9' 9), where %* 9 := * 9

(
* 9

)∗, 1Ω9 is
a matrix with ones at indices Ω9 , and ◦ denotes the entry-wise Hadamard
product. This corresponds to first projecting the left singular vectors of ' 9 on
the subspace spanned by columns of* 9 and then setting entries at indices
Ω9 to be equal to the entries of ' 9 at indices Ω9 . One can repeat this process
to achieve a more precise projection of ' 9 in the low-rank plus sparse matrix
set defined by

(
* 9 ,Ω9

)
.

The proof of NIHT follows the same line of thought as the one for low-
rank matrix completion by Tanner and WeiTanner and Wei (20132013), with the only difference
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Algorithm 1 Normalized Iterative Hard Thresholding (NIHT) for LS recovery
Input: 1 = A(-0),A , A , B, and termination criteria
Set: (!0 , (0) = RPCAA,B,�(A∗(1), �?), -0 = !0 + (0 , 9 = 0,

Ω0 = supp((0) and*0 as the top A left singular vectors of !0

1: while not converged do
2: Compute the residual ' 9 = A∗

(
1 −A(- 9)

)
3: Compute the stepsize:  9 =

Proj(* 9 ,Ω9)
(
' 9

)2

�
/
A (

Proj(* 9 ,Ω9)
(
' 9

) )2

2
4: Set, 9 = - 9 +  9 ' 9
5: Compute (! 9+1 , ( 9+1) = RPCAA,B,�(, 9 , �?) and set - 9+1 = ! 9+1 + ( 9+1

6: Let Ω9+1 = supp(( 9+1) and* 9+1 be the top A left singular vectors of ! 9+1

7: 9 = 9 + 1
8: end while

Output: - 9

of the hard thresholding projection, in the form ofRPCA, being an imprecise
projection with accuracy �? as stated in (4.534.53). The theorem provides full
guarantees for the practical algorithm only if the Robust PCA subroutine
is guaranteed to solve the projection within the �? optimality of (4.534.53) with
the number of corruptions B = O

(
<=/

(
�2A2) ) . The proof consists of deriv-

ing an inequality where
- 9+1 − -0


�
is bounded by a factor multiplying- 9 − -0


�
, and then showing that this multiplicative factor is strictly less

then one ifA satisfies RIC with Δ3 := ΔA,B,�(A) < 1/5.

Theorem 4.3 (Guaranteed recovery by NIHT). Suppose that A, B ∈ N and

� <
√
<=

/ (
3A
√

3B
)
are such that the restricted isometry constantΔ3 := Δ3A,3B,�(A) <

1
5 . Then NIHT applied to 1 = A(-0) as described in Algorithm 11 will linearly

converge as

‖- 9+1 − -̂‖� ≤ 8
Δ3 (1 − 3Δ3)
(1 − Δ3)2

‖- 9 − -̂‖� +
1 − 5Δ3
1 − Δ3

�? , (4.54)

where �? is the accuracy of the Robust PCA oblique projection that performs

projection on the set of incoherent low-rank plus sparse matrices LS<,=(A, B, �) and
-̂ is a matrix in proximity of -0

‖-̂ − -0‖� ≤ �?
1 − Δ3
1 − 5Δ3

. (4.55)

Proof. Let 1 = A(-0) be the vector of measurements of the matrix -0 ∈
LS<,=(A, B, �) and , 9 = - 9 − !

9
A∗

(
A(- 9) − 1

)
to be the update of - 9

before the oblique Robust PCA projection step - 9+1 = RPCAA,B,�(, 9 , �?).
By - 9+1 being within an �? distance in the Frobenius norm of the optimal
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RPCA projection - 9+1
rpca := RPCAA,B,�(, 9 , 0) defined in (4.534.53), 9 − - 9+12

�
=

, 9 − - 9+1
rpca + -

9+1
rpca − - 9+1

2

�
(4.56)

≤
(, 9 − - 9+1

rpca


�
+

- 9+1 − - 9+1
rpca


�

)2
(4.57)

≤
(, 9 − -0


�
+ �?

)2
, (4.58)

where in the second line we used the triangle inequality, and the third line
comes from -

9+1
rpca being the optimal projection thus being the closest matrix

in LS<,=(A, B, �) to, 9 in the Frobenius norm and by - 9+1 being within �?

distance of - 9+1
rpca. By expansion of the left hand side of (4.564.56), 9 − - 9+12
�
=

, 9 − -0 + -0 − - 9+12
�

(4.59)

=
, 9 − -0

2
�
+

-0 − - 9+12
�
+ 2

〈
, 9 − -0 , -0 − - 9+1〉 (4.60)

=

(, 9 − -0

�
+ �?

)2
≤

, 9 − -0
2
�
+ 2�?

, 9 − -0

�
+ �2

?

(4.61)

where the last line (4.614.61) follows from the inequality in (4.584.58). Subtracting
‖, 9 − -0‖2� from both sides of (4.614.61) gives- 9+1 − -0

2
�
≤ 2

〈
, 9 − -0 , -

9+1 − -0
〉
+ 2�?

, 9 − -0

�
+ �2

? . (4.62)

The matrix, 9 in the inner product on the right hand side of (4.624.62) can
be expressed using the update rule, 9 = - 9 −  9A∗

(
A

(
- 9

)
− 1

)
2
〈
, 9 − -0 , -

9+1 − -0
〉

= 2〈- 9 − -0 , -
9+1 − -0〉 − 2  9

〈
A∗A

(
- 9 − -0

)
, - 9+1 − -0

〉
(4.63)

= 2
〈
- 9 − -0 , -

9+1 − -0
〉
− 2  9

〈
A

(
- 9 − -0

)
, A

(
- 9+1 − -0

)〉
(4.64)

≤ 2
� −  9 �∗&�&

2

- 9 − -0

�

- 9+1 − -0

�
, (4.65)

where in the first line we use 1 = A(-0) and linearity of A, in the second Here it would be possible to
extend the result to be stable
under measurement error �1
as done in Theorem 4.24.2 by
adding an error term in (4.634.63).

line we split the inner product into two inner products by linearity of A,
and the inequality in the third line is a consequence of Lemma 4.44.4, stated in
§4.84.8 on page 9090.

The matrix , 9 can be expressed using the update rule , 9 = - 9 −
 9A∗

(
A

(
- 9

)
− 1

)
in the second term of the right hand side of (4.624.62) and

upper bounded by Lemma 4.44.4, 9 − -0

�
=

- 9 − -0 +  9A∗
(
A

(
- 9 − -0

))
2

(4.66)

≤
� −  9 �∗&�&

2

- 9 − -0

�
. (4.67)

By Lemma 4.44.4, the eigenvalues of
(
� −  9 �∗&�&

)
are bounded by

1 −  9 (1 + Δ3) ≤ �
(
� −  9 �∗&�&

)
≤ 1 +  9 (1 − Δ3) , (4.68)
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where Δ3 := Δ3A,3B,�.
Consider the stepsize computed in Algorithm 11, Line 3 inspired by the

previousworkonNIHT in the contextof compressedsensing (Blumensath and DaviesBlumensath and Davies,
20102010) and low-rank matrix sensing (Tanner and WeiTanner and Wei, 20132013)

 9 =

Proj(* 9 ,Ω9)
(
' 9

)
�A (

Proj(* 9 ,Ω9)
(
' 9

) )
2

(4.69)

where the projection Proj(* 9 ,Ω9)
(
' 9

)
ensures that the residual ' 9 is projected

onto the set LS<,=(A, B, �). Then we can bound  9 using the RIC ofA as

1
1 + Δ1

≤  9 ≤
1

1 − Δ1
, (4.70)

where Δ1 := ΔA,B,�. Combining (4.684.68) with (4.704.70) gives

1 − 1 + Δ3
1 − Δ1

≤ �
(
� −  9 �∗&�&

)
≤ 1 − 1 − Δ3

1 + Δ1
. (4.71)

Since Δ3 ≥ Δ1, the magnitude of the lower bound in (4.714.71) is greater than
the upper bound. Therefore

� := 2
(
1 + Δ3
1 − Δ1

− 1
)
≥ 2

� −  9 �∗&�&
2
, (4.72)

where the constant � is strictly smaller than one if Δ3 < 1/5.
Finally, the error in (4.624.62) can be upper bounded by (4.654.65) combinedwith

(4.674.67) with � being the upper bound on the operator norm in (4.724.72)- 9+1 − -0
2
�
≤ �

- 9 − -0

�

- 9+1 − -0

�
+ ��?

- 9 − -0

�
+ �2

? . (4.73)

It remains to show the inequality (4.734.73) implies the update rule contracts
the error and the iterates - 9 converge to a matrix -̂ that is within a small
in the Frobenius norm from -0 depending on the precision �? of the RPCA.
Rewrite (4.734.73) using the notation 4 9 := ‖- 9 − -0‖�(

4 9+1
)2
≤ � 4 9 4 9+1 + � �? 4 9 + �2

? (4.74)

4 9+1 ≤ � 4 9 + � �?
4 9

4 9+1 +
�2
?

4 9+1 . (4.75)

In the following, assume �?
1−� ≤ 4 9+1 and upper bound the right hand side of

(4.754.75) as

4 9+1 ≤ � 4 9 + � �?
4 9

4 9+1 +
�2
?

4 9+1 (4.76)

= � 4 9 + �(1 − �)4 9
�?

(1 − �)4 9+1 + �?(1 − �)
�?

(1 − �)4 9+1 (4.77)

≤ � 4 9 + �(1 − �)4 9 + (1 − �)�? (4.78)
< 4 9�, (4.79)
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where the inequality (4.784.78) is a consequence of 4 9+1 ≥ �?/(1 − �) and the
inequality (4.794.79) holds if 4 9 > �?/(1 − �). Therefore, if 4 9 > �?/(1 − �) then
the error sequence is contractive because � < 1 by Δ3 < 1/5 and has a fixed
point 4∗ = �?/(1 − �) = �?

1−Δ3
1−5Δ3

. Moreover, by Δ3 ≥ Δ1, the equation in (4.784.78)
is upper bounded as

4 9+1 ≤ 8
Δ3 (1 − 3Δ3)
(1 − Δ3)2

4 9 + 1 − 5Δ3
1 − Δ3

�? , (4.80)

which gives an upper bound on the rate of convergence.

4.4.2 Normalized Alternating Hard Thresholding

One of the shortcomings of the previously discussed NIHT is the need to
compute a hard-thresholding operation on LS<,=(A, B, �) in the form of an
imprecise Robust PCA subroutine.We nowpresentNAHTwhich overcomes It is also possible to mod-

ify the algorithm to perform
the two hard-thresholding
projections in parallel. This
wouldbe especially beneficial
in the case when both of the
thresholding operations are
expensive to compute.

this issue by alternating between projecting of the low-rank and the sparse
component. NAHT is also stable to error �1 , butwe omit the stability analysis
for clarity in the proofs.

Same as in the case of NIHT, the projection used in computing the
stepsize is defined as Proj(* 9 ,Ω9)

(
' 9

)
:= %* 9' 9 + 1Ω9 ◦ (' 9 − %* 9' 9), where

%* 9 := * 9
(
* 9

)) , 1Ω9 is the matrix with ones at indicesΩ9 , and ◦ denotes the
entry-wise Hadamard product.

In addition, NAHT also provably solves Robust PCA with the optimal
order of the number of corruptions B = O

(
<=/

(
�2A2) ) when the sensing

operator is the identity, and therefore satisfies the RICs with Δ = 0.

Theorem 4.4 (Guaranteed recovery by NAHT). Suppose that A, B ∈ N and � <
√
<=

/ (
3A
√

3B
)
are such that the restricted isometry constantΔ3 := Δ3A,3B,�(A) <

1
9 −�2. Then NAHT applied to 1 = A(-0) as described in Algorithm 22 will linearly

converge to -0 = !0 + (0 as! 9+1 − !0

�
+

( 9+1 − (0

�
≤

6Δ3 + 9
2�2

1 − 3Δ3 − 9
2�2

(! 9 − !0

�
+

( 9 − (0

�

)
.

(4.81)

Proof. Let 1 = A(-0) be the vector of measurements of the matrix -0 ∈ Again, it is possible to extend
the result to the case when
there is a measurement error
�1 as done in Theorem 4.24.2 by
having 1 = A(-0) + 4, with
‖4‖2 ≤ �1 .

LS<,=(A, B, �) and + 9 = ! 9 − !
9
A∗

(
A(- 9) − 1

)
to be the update of ! 9 before

the rank A projection ! 9+1 = HTA(+ 9). As a consequence of ! 9+1 being the
closest rank A matrix to + 9 in the Frobenius norm we have that+ 9 − !0

2
�
≥

+ 9 − ! 9+12
�
=

+ 9 − !0 + !0 − ! 9+12
�

=
+ 9 − !0

2
�
+

!0 − ! 9+12
�
+ 2

〈
+ 9 − !0 , !0 − ! 9+1〉 . (4.82)
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Algorithm 2 Normalized Alternating Hard Thresholding (NAHT) for LS recov-
ery

Input: 1 = A(-0),A , A , B, and termination criteria
Set: !0 = HT(A∗(1); A), (0 = HT(A∗(1) − !0; B), -0 = !0 + (0 , 9 = 0,

Ω0 = supp((0) and*0 as the top A left singular vectors of !0

1: while not converged do
2: Compute the residual ' 9

!
= A∗

(
A(- 9) − 1

)
3: Compute the stepsize !

9
=

Proj(* 9 ,Ω9)
(
' 9

)2

�

/ A (
Proj(* 9 ,Ω9)

(
' 9

) )2

2
4: Set + 9 = ! 9 − !

9
'
9

!

5: Set ! 9+1 = HT(+ 9 ; A) and let* 9+1 be the left singular vectors of ! 9+1

6: Set - 9+ 1
2 = ! 9+1 + ( 9

7: Compute the residual ' 9
(
= A∗

(
A(- 9+ 1

2 ) − 1
)

8: Compute the stepsize

(
9
=

Proj(* 9+1 ,Ω9)
(
' 9

)2

�

/ A (
Proj(* 9+1 ,Ω9)

(
' 9

) )2

2
9: Set, 9 = ( 9 − (

9
'
9

(

10: Set ( 9+1 = HT(, 9 ; B) and let Ω9+1 = supp(( 9+1)
11: Set - 9+1 = ! 9+1 + ( 9+1

12: 9 = 9 + 1
13: end while

Output: - 9 = ! 9 + ( 9

Subtracting
+ 9 − !0

2
�
from both sides of (4.824.82) and rearranging terms gives!0 − ! 9+12

�
≤ 2

〈
+ 9 − !0 , !

9+1 − !0
〉

(4.83)

=2
〈
! 9 − !9 A

∗
(
A

(
- 9 − -0

))
− !0 , !

9+1 − !0

〉
(4.84)

=2
〈
! 9 − !0 − !9 A

∗
(
A

(
! 9 − !0 + ( 9 − (0

))
, ! 9+1 − !0

〉
(4.85)

=2
〈
! 9 − !0 , !

9+1 − !0
〉
− 2 !9

〈
A

(
! 9 − !0

)
, A

(
! 9+1 − !0

)〉
− 2 !9

〈
A

(
( 9 − (0

)
, A

(
! 9+1 − !0

)〉
(4.86)

≤2
� − !9 �∗&�& ! 9 − !0


�

! 9+1 − !0

�

+ 2 !9 �2
( 9 − (0


�

! 9+1 − !0

�
, (4.87)

where in the second line we expanded + 9 using the update rule + 9 =

! 9 − !
9
A

(
A(- 9) − 1

)
and 1 = A(-0), in the third line we expanded

- 9 = ! 9 + ( 9 , in the fourth line we split the inner product into two in-
ner products by linearity of A, and in the last line the inequality comes
from Lemma 4.44.4 bounding the first two terms and Lemma 4.34.3 bounding
the third term with �2 :=

(
Δ2 + 2�2

1−�2
2

)
where Δ2 := Δ2A,2B,� and �2 := �2A,2B,�

since
(
! 9+1 − !0 + ( 9 − (0

)
∈ LS<,=(2A, 2B, �). Dividing both sides of (4.874.87)
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by
!0 − ! 9+1


�
gives!0 − ! 9+1

�
≤ 2

� − !9 �∗&�& ! 9 − !0

�
+ 2 !9 �2

( 9 − (0

�
. (4.88)

Let, 9 = ( 9−(
9
A∗

(
A(- 9+ 1

2 ) − 1
)
be the subsequent update of ( 9 before

the B-sparse projection ( 9+1 = HTB(, 9). By ( 9+1 being the closest B sparse
matrix to, 9 in the Frobenius norm and by ‖(0‖0 ≤ B, it follows that, 9 − (0

2
�
≥

, 9 − ( 9+12
�
=

, 9 − (0 + (0 − ( 9+12
�

=
, 9 − (0

2
�
+

(0 − ( 9+12
�
+ 2

〈
, 9 − (0 , (0 − ( 9+1〉 . (4.89)

Subtracting
, 9 − (0

2
�
from both sides in (4.894.89) and rearranging terms gives(0 − ( 9+12

�
≤ 2

〈
, 9 − (0 , (

9+1 − (0
〉

(4.90)

=2
〈
( 9 − (9 A

∗
(
A

(
- 9+ 1

2 − -0

))
− (0 , (

9+1 − (0

〉
(4.91)

=2
〈
( 9 − (0 − (9 A

∗
(
A

(
! 9+1 − !0 + ( 9 − (0

))
, ( 9+1 − (0

〉
(4.92)

=2
〈
( 9 − (0 , (

9+1 − (0
〉
− 2 (9

〈
A

(
( 9 − (0

)
, A

(
( 9+1 − (0

)〉
− 2 (9

〈
A

(
! 9+1 − !0

)
, A

(
( 9+1 − (0

)〉
(4.93)

≤2
� − (9 �∗&�& ( 9 − (0


�

( 9+1 − (0

�

+ 2 (9 �2
! 9+1 − !0


�

( 9+1 − (0

�
, (4.94)

where in the second line we express , 9 using the update rule , 9 =

( 9 − (
9
A

(
A(- 9+ 1

2 ) − 1
)
and 1 = A(-0), in the third line we expanded

- 9+ 1
2 = ! 9+1 + ( 9 , in the fourth line we split the inner product into two inner

products by linearity of A, and the inequality in the last line comes from
Lemma 4.44.4 bounding the first two terms and Lemma 4.34.3 bounding the third
term with �2 :=

(
Δ2 + 2�2

1−�2
2

)
where Δ2 := Δ2A,2B,� and �2 := �2A,2B,� since(

! 9+1 − !0 + ( 9+1 − (0
)
∈ LS<,=(2A, 2B, �). Dividing both sides of (4.944.94) by(0 − ( 9+1


�
gives(0 − ( 9+1
�
≤ 2

� − (9 �)&�& ( 9 − (0

�
+ 2 (9 �2

! 9+1 − !0

�
. (4.95)

Adding together (4.884.88) and (4.954.95)!0 − ! 9+1
�
+

(0 − ( 9+1
�
≤

2
� − !9 �)&�& ! 9 − !0


�
+ 2 !9 �2

( 9 − (0

�

+2
� − (9 �)&�& ( 9 − (0


�
+ 2 (9 �2

! 9+1 − !0

�
, (4.96)
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which after rearranging terms in (4.964.96) becomes(
1 − 2 (9 �2

) !0 − ! 9+1
�
+

(0 − ( 9+1
�

≤ 2
� − !9 �)&�& ! 9 − !0


�

+2
(� − (9 �)&�& + !9 �2

) ( 9 − (0

�

(4.97)

and because (
9
, !

9
,Δ2 ≥ 0 and �2 ∈ (0, 1), subtracting 2 (

9
�2‖(0−( 9+1‖� on

the left does not increase the left hand side while adding 2 !
9
�2

! 9 − !0

�

on the right does not decrease the right hand side of (4.974.97), therefore(
1 − 2 (9 �2

) (!0 − ! 9+1
�
+

(0 − ( 9+1
�

)
≤ 2

(� − (9 �)&�& + !9 �2

) (! 9 − !0

�
+

( 9 − (0

�

)
, (4.98)

Dividing both sides of (4.984.98) by
(
1 − 2 (

9
�2

)
simplifies to!0 − ! 9+1

�
+

(0 − ( 9+1
�

≤ 2

� − (9 �)&�& + !9 �2

1 − 2 (
9
�2

(! 9 − !0

�
+

( 9 − (0

�

)
. (4.99)

By Lemma 4.44.4, the eigenvalues of
(
� −  9 �)&�&

)
can be bounded as

1 −  9 (1 + Δ3) ≤ �
(
� − �)&�&

)
≤ 1 +  9 (1 − Δ3) , (4.100)

with Δ3 := Δ3A,3B,� being the RIC ofA. By !
9
and (

9
being the normalized

stepsizes as introduced in (Blumensath and DaviesBlumensath and Davies, 20102010; Tanner and WeiTanner and Wei,
20132013)

!9 =

Proj(* 9 ,Ω9)
(
' 9

)2

�A (
Proj(* 9 ,Ω9)

(
' 9

) )2

2

and (9 =

Proj(* 9+1 ,Ω9)
(
' 9

)2

�A (
Proj(* 9+1 ,Ω9)

(
' 9

) )2

2
(4.101)

where the projection Proj(* 9 ,Ω9)
(
' 9

)
, Proj(* 9+1 ,Ω9)

(
' 9+

1
2

)
ensures that the

residual ' 9 and ' 9+ 1
2 is projected into the set LS<,=(A, B, �). Then, it follows

from the RIC forA that the stepsizes !
9
, (

9
can be bounded as

1
1 + Δ1

≤ !/(
9
≤ 1

1 − Δ1
, (4.102)

where Δ1 := ΔA,B,�. Putting (4.1004.100) and (4.1024.102) together

1 − 1 + Δ3
1 − Δ1

≤ �
(
� − !/(

9
�)&�&

)
≤ 1 − 1 − Δ3

1 + Δ1
. (4.103)
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Since Δ3 ≥ Δ1 we have that the magnitude of the lower bound in (4.1034.103) is
greater than the upper bound. Therefore

1 + Δ3
1 − Δ1

− 1 ≥
� − !/(9

�)&�&


2
. (4.104)

Finally, the constant on the right handside of (4.994.99) can be upperbounded

� := 2

� − (9 �)&�& + !9 �2

1 − 2 (
9
�2

(4.105)

≤ 2

(
1+Δ3
1−Δ1
− 1

)
+ 1

1−Δ1

(
Δ2 + 2�2

1−�2
2

)
1 − 2 1

1−Δ1

(
Δ2 + 2�2

1−�2
2

) = 2
Δ3 + Δ1 + Δ2 + 2�2

1−�2
2

1 − Δ1 − 2Δ2 − 4�2
1−�2

2

(4.106)

≤
6Δ3 + 4�2

1−�2
2

1 − 3Δ3 − 4�2
1−�2

2

(4.107)

≤
6Δ3 + 9

2�2

1 − 3Δ3 − 9
2�2

(4.108)

where the inequality in the second line in (4.1064.106) comes from upper bounds
in (4.1044.104) and in (4.1024.102), the third line in (4.1074.107) follows from �3 ≥ �2 ≥ �1,
and the last inequality in (4.1084.108) follows from 4�2

1−�2
2
< 9

2 when �2 < 9.
To ensure that � < 1, it suffices to show that the right-hand side in (4.1084.108)

is smaller than one, which translates to

6Δ3 +
9
2�2 < 1 − 3Δ3 −

9
2�2. (4.109)

Rearranging of the terms in the above inequality in (4.1094.109) results into

Δ3 ≤
1
9 − �2 , (4.110)

which is satisfied only when �2 < 1/9, i.e. the RICs are positive Δ3 > 0.
For Δ3A,3B,� < 1

9 − �2A,2B,� the inequality in (4.994.99) implies contraction of
the error!0 − ! 9+1

�
+

(0 − ( 9+1
�
≤ �

(! 9 − !0

�
+

( 9 − (0

�

)
, (4.111)

because � < 1 which guarantees linear convergence of iterates ! 9 and ( 9 to
!0 and (0 respectively.

4.5 empirical average case performance

Figure 4.14.1 presents empirically observed phase transitions, which indicate
the values of model complexity A, B and measurements ? for which recovery
is possible. Figure 4.24.2 and 4.34.3 gives examples of convergence rates for NIHT,
NAHT, and SpaRCS, including contrasting different methods to implement
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the projection NIHT, step 5 of Algorithm 11. An additional phase transition
simulation for the convex relaxation is given in Figure 4.44.4.

Synthetic matrices -0 = !0 + (0 ∈ LS<,=(A, B, �) are generated using the
experimental setup proposed in the Robust PCA literature (Netrapalli et al.Netrapalli et al.,
20142014; Yi et al.Yi et al., 20162016; Cai et al.Cai et al., 20192019). The low-rank component is formed as
!0 = +

) , where * ∈ R<×A , + ∈ R=×A are two random matrices having their
entries drawn i.i.d. from the standardGaussian distribution. The support set
of the sparse component (0 is generated by sampling a uniformly random
subset of [<] × [=] indices of size B and each non-zero entry ((0)8 , 9 is drawn
from the uniform distribution over

[
−E

(
|(!0)8 , 9 |

)
, E

(
|(!0)8 , 9 |

) ]
.

Each synthetic matrix is measured using linear operators A : R<×= →
R? . The random Gaussian measurement operators are constructed by ?

matrices �(ℓ ) ∈ R<×= whose entries are sampled from Gaussian distribution
�
(ℓ )
8 , 9
∼ N(0, 1/?)where ? is the number of measurements. The Fast Johnson-

Lindenstrauss Transform is implemented as

AFJLT (-) = '�� vec (-) , (4.112)

where ' ∈ R?×<= is a restriction matrix constructed from a<=×<= identity
matrix with ? rows randomly selected, � ∈ R<=×<= is discrete cosine trans-
form matrix, � ∈ R<=×<= is a diagonal matrix whose entries are sampled
independently randomly from {−1, 1}, and vec (-) ∈ R<= is the vectorized
matrix - ∈ R<×= .

Theorem 4.24.2, Theorem 4.34.3, and Theorem 4.44.4 indicate that recovery of -0
fromA(-0) depends on the problem dimensions through the ratios of the
number of measurements ? with the ambient dimension <=, and the mini-
mum number of measurements, A(<+ =− A)+ B, through an undersampling
and two oversampling ratios

� =
?

<=
and �A =

A(< + = − A)
?

, �B =
B

?
. (4.113)

The matrix dimensions < and = are held fixed, while ?, A and B are cho-
sen according to varying parameters �, �A and �B . For each pair of �A , �B ∈
{0, 0.02, 0.04, . . . , 1} where �A + �B ≤ 1, with the sampling ratio restricted
to values � ∈ {0.02, 0.04, . . . , 1}, 20 simulated recovery tests are conducted
and we compute the critical subsampling ratio �∗ above which more than
half of the experiments succeeded. For the linear transformA drawn from
the (dense) Gaussian distribution, the highest per iteration cost in NIHT
and NAHT comes from applyingA to the residual matrix, which requires
?<= scalar multiplications which scales proportionally to (<=)2. For this
reason, our tests are restricted to the matrix size of < = = = 100 in the case
of NIHT and NAHT, and to a smaller size < = = = 30 for testing the recov-
ery by solving the convex relaxation (4.34.3) with semidefinite programming
(Toh et al.Toh et al., 19991999) that hasO

(
(<=)2

)
variables which ismore computationally
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Figure 4.1: Phase transition
level curves denoting the value
of �∗ forwhich values of �A and
�B below which are recovered
for at least half of the experi-
ments for �, �A , and �B as given
by (4.1134.113). NIHT is observed
to recover matrices of higher
ranks and sparsities from FJLT
than from Gaussian measure-
ments, while the phase tran-
sitions for NIHT and NAHT
are comparable. The RPCA
projection in NIHT, step 5 in
Alg. 11, is performed by AccAlt-
Proj (Cai et al.Cai et al., 20192019).

demanding11 compared to the hard thresholding gradient descent methods.
Algorithms are terminated at iteration ℓ when either: the relative residual
error is smaller than 10−6, that is when

A(-ℓ ) − 12 /‖1‖2 ≤ 10−6 ‖1‖2, or
the relative decrease in the objective is small( A(-ℓ ) − 12A(-ℓ−15) − 1


2

)1/15

> 0.999, (4.114)

or the maximum of 300 iterations is reached. An algorithm is considered
to have successfully recovered -0 ∈ LS<,=(A, B, �) if it returns a matrix
-ℓ ∈ LS<,=(A, B, �) that is within 10−2 of -0 in the relative Frobenius error,-ℓ − -0


�
≤ 10−2 ‖-0‖�.

Figure 4.14.1 depicts the phase transitions of � above which NIHT and
NAHT successfully recovers -0 in more than half of the experiments. For

1As an example, a low-rank plus sparse matrix with < = = = 100 with �A = �B = 0.1
undersampled and measured with Gaussian matrix with � = 0.5 takes 2.5 seconds and 2.3
seconds to recover using NIHT and NAHT respectively, while the recovery using the convex
relaxation takes over 7 hours.
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example, the level curve 0.4 in Figure 4.14.1 denotes the values of �A and
�B below which recovery is possible for at least half of the experiments for
? = 0.4<= and �A , �B as given by (4.1134.113). Note that the bottom left portion
of Figure 4.14.1 corresponds to smaller values of model complexity (A, B) and
are correspondingly easier to recover than larger values of (A, B). Both al-
gorithms are observed to recover matrices with prevalent rank structure,
�A ≤ 0.6, even from very few measurements as opposed to matrices with
prevalent sparse structure requiring in general more measurements for
a successful recovery. Phase transitions corresponding to the sparse-only
(�A = 0) and to the rank-only (�B = 0) cases are roughly in agreement with
phase transitions that have been observed for non-convex algorithms in
compressed sensing (Blanchard and TannerBlanchard and Tanner, 20152015) and matrix completion
literature (Tanner and WeiTanner and Wei, 20132013; Blanchard et al.Blanchard et al., 20152015). We observe that
NAHT achieves almost identical performance to NIHT in terms of possible
recovery despite not requiring the computationally expensive Robust PCA
projection in every iteration. For both algorithms we see that the successful
recovery is possible for matrices with higher ranks and sparsities in the case
of FJLT measurements compared to Gaussian measurements.

Equivalent experiments are conducted for the convex relaxation (4.34.3),
but with smaller matrix size 30 × 30 and limited to 10 simulations for each
set of parameters due to the added computational demands. The convex
optimization is formulated using the CVX modeling framework developed
byGrant and BoydGrant and Boyd (20142014, 20082008) and solved inMatlab by the semidefinite pro-
gramming optimization package SDPT3 from Toh et al.Toh et al. (19991999). We observe
that recovery by solving the convex relaxation is successful for somewhat
lower ranks and sparsities and requiring a larger sampling ratio � compared
to the non-convex algorithms.

The observed phase transitions of the convex relaxation alongside phase
transitions for < = = = 30 experiments with NIHT and NAHT are depicted
in Figure 4.44.4. Comparing the phase transitions of the non-convex algorithms
in Figure 4.14.1 and Figure 4.44.4 show that with the increased problem size,
the phase transition are independent of the dimension with only small
differences due to the finite-dimensional effects of the smaller problem size
in the case of < = = = 30.

Figure 4.24.2 presents convergence timings of Matlab implementations of
the three non-convex algorithms used for recovery of matrices with < =

= = 100 from ? = (1/2)102 (� = 1/2) measurements and three values of �A =
�B = {0.05, 0.1, 0.2}. The convergence results are presented for two variants
of NIHT with different Robust PCA algorithms Accelerated Alternating
Projection (AccAltProj) by Cai et al.Cai et al. (20192019) and Go Decomposition (GoDec)
by Zhou and TaoZhou and Tao (20112011) in the projection step 5 of Algorithm 11. Both NIHT
and NAHT converge at a much faster rate than the existing non-convex
algorithm for low-rank plus sparse matrix recovery SpaRCS by Waters et al.Waters et al.
(20112011). All the algorithms take longer to recover a matrix for increased rank
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Figure 4.2: Relative error in
the approximate -ℓ as a func-
tion of time for synthetic prob-
lems with < = = = 100 and
? = (1/2)1002, � = 1/2, for
Gaussian linear measurements
A. In (b), SpaRCS converged in
171 sec. (45 iterations), and in
(c), SpaRCS did not converge.

A and/or sparsity B.
The computational efficacy of NIHT compared to NAHT depends on the

cost of computing the Robust PCA calculation in comparison to the cost of
applyingA. NAHT computes two step sizes in each iteration which results
into computingA twice per iteration in comparison to just one such compu-
tation per iteration in the case of NIHT. On the other hand, NIHT involves
solving Robust PCA in every iteration for the projection stepwhereas NAHT
performs computationally cheaper singular value decomposition (SVD) and
sparse hard thresholding projection.

Figure 4.34.3 illustrates the convergence of the individual low-rank and
sparse components ‖!ℓ − !0‖� and ‖(ℓ − (0‖� as a function of time. The
algorithms are observed to approximate the low-rank factor more accurately
than the sparse component and that the computational time increases for
larger values of sparsity fraction �B . Moreover, for both NIHT and NAHT
the relative error of both components decreases together.

Figure 4.44.4 depicts the phase transitions of � above which NIHT, NAHT
and solving the convex relaxation problem in (4.34.3) successfully recovers -0
in more than half of the experiments. Comparing Figure 4.44.4 to Figure 4.14.1
we see that the phase transitions roughly occur for the same parameters
�A , �B with only small differences due to the finite-dimensional effects of
the smaller problem size being more pronounced when < = = = 30. We
also observe that non-convex algorithms perform better than the convex
relaxation in that they are able to recover higher ranks and sparsities from
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Figure 4.3: Error between the
approximate recovered low-
rank and sparse components
!ℓ and (ℓ and the true low-
rank and sparse components
!0 and (0. Error is plotted as
a function of recovery time for
synthetic problems with < =

= = 100 and ? = (1/2)1002,
� = 1/2, for Gaussian linear
measurementsA.

fewer samples in addition to also taking less time to converge.

4.6 applications

We now present exemplary applications of the low-rank plus sparse ma-
trix recovery in dynamic-foreground/static-background and computational
multispectral imaging. Software to reproduce the experiments of this section
is publicly available at: github.com/SimonVary/lrps-recoverygithub.com/SimonVary/lrps-recovery.

4.6.1 Dynamic-foreground/static-background video separation

Background/foreground separation is the task of distinguishing moving
objects from the static-background in a time series, e.g. a video recording.
A widely used approach is to arrange frames of the video sequence into
an < × = matrix, where < is the number of pixels and = is the number of
frames of the recording and apply Robust PCA to decompose the matrix
into the sum of a low-rank and a sparse component which model the static
background and dynamic foreground respectively (Bouwmans et al.Bouwmans et al., 20172017).
Herein we consider the same problem but with the additional challenge of
recovering the video sequence from subsampled information (Waters et al.Waters et al.,
20112011) analogous to compressed sensing.

We apply NIHT, Algorithm 11, to the well studied shopping mall surveil-
lance introduced by Li et al.Li et al. (20042004) which is a 190×140×150 video sequence.
The video sequence is rearranged into a matrix of size 26 600× 150 and mea-
sured using subsampled FJLT (4.1124.112) with one third as many measurements
as the ambient dimension, � = 0.33. The static-background ismodeledwith a
rank-A matrix with A = 1 and the dynamic-foreground by an B-sparse matrix
with B = 197 505 (�A = 0.02, �B = 0.15). Figure 4.54.5 displays the reconstructed
image -=8ℎC and its sparse component (=8ℎC alongside the results obtained
from applying Robust PCA (AccAltProj by Cai et al.Cai et al. (20192019)) which makes
use of the fully sampled video sequence rather than the one-third measure-
ments available to NIHT. NIHT accurately estimates the video sequence
achieving PSNR of 34.5 dB while also separating the low-rank background
from the sparse foreground. The results are of a similar visual quality to the
case of Robust PCA that achieves PSNR of 35.5 dB which requires access to
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(a) Convex relaxation (Gaussian measurements)
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(b) Convex relaxation (FJLT measurements)
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(c) NIHT (Gaussian measurements)
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(d) NIHT (FJLT measurements)
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(e) NAHT (Gaussian measurements)
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(f) NAHT (FJLT measurements)

Figure 4.4: Phase transition
level curves denoting the value
of �∗ for which values of �A
and �B below which are recov-
ered for at least 5 out of 10
experiments for �, �A , and �B
as given by (4.1134.113). The con-
vex optimization problem is
solved by SDPT3 (Toh et al.Toh et al.,
19991999). NIHT and NAHT are
observed to recover matrices
of higher ranks and sparsities
compared to solving the con-
vex relaxation.

the full video sequence.

4.6.2 Computational multispectral imaging

A multispectral image captures a wide range of light spectra generating a
vector of spectral responses at each image pixel thus acquiring information in
the form of a third-order tensor. The low-rank model has a vital role in mul-
tispectral imaging in the form of linear spectral mixing models that assume
the spectral responses of the imaged scene are well approximated as a linear
combination of spectral responses of only few core materials referred to as
endmembers (Dimitris et al.Dimitris et al., 20032003). As such, the low-rank structure can be ex-
ploited by computational imaging systemswhich acquire the image in a com-
pressed from and use computational methods to recover a high-resolution
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(a) -rpca

(b) -niht

(c) (rpca

(d) (niht

Figure 4.5: NIHT recovery re-
sults of a 190× 140× 150 video
sequence compared to the ap-
proximation of the complete
video sequence by Robust PCA
(AccAltProj (Cai et al.Cai et al., 20192019)).
The video sequence is re-
shaped into a 26 600 × 150 ma-
trix and either recovered from
FJLT measurements with � =
0.33 using rank A = 1 and spar-
sity B = 197 505 or approxi-
mated from the full video se-
quence by computing RPCA
by AccAltProj with the same
rank and sparsity parameters.
Recovery by NIHT from sub-
sampled information achieves
PSNR of 34.5 dB whereas the
Robust PCA approximation
from the full video sequence
achieves PSNR of 35.5 dB.

image (Cao et al.Cao et al., 20162016; Degraux et al.Degraux et al., 20152015; Antonucci et al.Antonucci et al., 20192019). How-
ever, when different materials are in close proximity the resulting spectrum
can be a highly nonlinear combination of the endmembers resulting in anoma-
lies of the model (Stein et al.Stein et al., 20022002). Herein we propose the low-rank plus
sparse matrix recovery as a way to model the spectral anomalies in the
low-rank structure.

We employ NIHT on a 512× 512× 48 airborne hyperspectral image from
the GRSS 2018 Data Fusion contest (Xu et al.Xu et al., 20192019) that is rearranged into
a matrix of size 262 144 × 48 and subsampled using FJLT with � = 0.33.
Figure 4.64.6 demonstrates recovery by NIHT using rank A = 3 and sparsity
B = 150 995 (�A = 0.25, �B = 0.05) in comparison with the the low-rank
model with rank A = 3 and B = 0 (�A = 0.25, �B = 0). Both methods
recover the image well but the low-rank plus sparse recovery achieves
slightly higher PSNR of 39.1 dB compared to the low-rank recovery that has
PSNR of 38.9 dB and slightly better fine details. Figure 4.6d4.6d and Figure 4.6e4.6e
depict the localization of the error in terms of PSNR and shows that adding
the sparse component improves PSNR of a few localized parts. Although
the overall gain in the PSNR is small compared to the low-rank model,
the differences in the localized regions of the image can be potentially
impactful when further analyzed in practical applications such as semantic
segmentation (Kemker et al.Kemker et al., 20182018).

4.7 summary and discussion

This chapter began with the aim of recovering an unknown low-rank plus
sparse matrix -0 given a vector of measurements 1 = A(-0) and a subsam-
pling operatorA : R<×= → R? .
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(a) Groundtruth Xtrue (b) Low-rank plus sparse Xniht (c) Low-rank Xmc

(d) PSNR (low-rank)

(e) PSNR (low-rank plus sparse)

Xtrue

Xniht

Xmc

(f) Detail 1 (694 nm) (g) Detail 2 (694 nm)

Figure 4.6: Recovery by NIHT
from FJLT measurements with
� = 0.33 using low-rank model
(�A = 0.25, �B = 0) com-
pared to the low-rank plus
sparse model (�A = 0.25, �B =
0.05). Figure 4.6a4.6a - 4.6b4.6b show
the color renderings of the
original multispectral image
and the two recovered images.
Figure 4.6d4.6d and Figure 4.6e4.6e
show the spatial PSNR of the
recovery from the low-rank
only model (overall PSNR of
38.9 dB) and the low-rank plus
sparse model (overall PSNR
of 39.1 dB) respectively. Fig-
ure 4.6f4.6f and Figure 4.6g4.6g show
two details of size 128 × 128 in
the 694 nm band.

We first showed in Theorem 4.14.1 that if the RICs of A are bounded,
there exists a unique matrix -0 ∈ LS<,=(A, B, �) such that A(-0) = 1. We
then reviewed the most popular algorithms for compressed sensing, matrix
sensing, and Robust PCA.

In §4.34.3, we proved Theorem 4.24.2 that if the RICs are sufficiently bounded,
solving a convex optimisation problem recovers -0 robustly even in the
presence of the measurement error and/or model mismatch.

We proposed in §4.44.4 two gradient descentmethods: Normalized Iterative
HardThresholding (NIHT) andNormalizedAlternatingHardThresholding
(NAHT). The first one, NIHT is based on the analogous compressed sensing
andmatrix sensing algorithms developed by (Blumensath and DaviesBlumensath and Davies, 20102010)
and (Tanner and WeiTanner and Wei, 20132013) respectively. The main disadvantage of NIHT
for recovery of low-rank plus sparse matrices is that in every iteration
it requires to perform an oblique projection on the set LS<,=(A, B, �) by
solving a Robust PCA problem. Solving Robust PCA is expensive because
it usually involves an iterative process that solves SVD in every iteration.
This hindrance is overcome by NAHT, which updates the low-rank and the
sparse components in an alternating fashion and applies the projections
separately and is therefore faster.

We prove, that if RICs are sufficiently bounded, bothNIHT (Theorem 4.34.3)
and NAHT (Theorem 4.44.4) converge to the unique minimizer, or in the case
of NIHT to a matrix sufficiently close to the minimizer depending on the
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accuracy of the used oblique projection method. The non-convex algorithms
are also stable to error �1 , but we omit the stability analysis for clarity in the
proofs.

Both the convex formulation andNAHT, also provably solve Robust PCA
with theoptimalorderof thenumberof corruptions B = O

(
<=/

(
�2A2) ) when

the sensing operator is the identity, and therefore satisfies the RICs with
Δ = 0.

We implemented the methods in MATLAB and performed a range of
numerical experiments. Firstly, in §4.54.5, we empirically observe a phase tran-
sition in the parameter space for which the recovery is successful by convex
relaxation and the two non-convex methods. Numerical experiments on
synthetic data empirically demonstrate phase transitions in the parame-
ter space for which the recovery is possible. Experiments for dynamic-
foreground/static-background video separation show that the segmenta-
tion of moving objects can be obtained with similar error from only one
third as many measurements as compared to the entire video sequence.

The contributions here open up the possibility of other algorithms in com-
pressed sensing and low-rank matrix completion/sensing to be extended
to the case of low-rank plus sparse matrix recovery, e.g. more efficient al-
gorithms such as those employing momentum (Kyrillidis and CevherKyrillidis and Cevher, 20142014;
WeiWei, 20152015) orminimising over increasingly larger subspaces (Blanchard et al.Blanchard et al.,
20152015).

4.8 supporting lemmata

In the proof of Theorem 4.24.2 we make use of the following Lemma 4.14.1 and
Corollary 4.14.1 fromRecht et al.Recht et al. (20102010) whichwe restate here for completeness.

Lemma 4.1 ((Recht et al.Recht et al., 20102010, Lemma 3.4)). Let � and � be matrices of the

same dimensions. Then there exist matrices �1 and �2 such that

1. � = �1 + �2,

2. rank�1 ≤ 2rank�,
3. ��)2 = 0 and �)�2 = 0,
4. 〈�1 , �2〉 = 0.

Corollary 4.1 ((Recht et al.Recht et al., 20102010, Lemma 2.3)). Let � and � be matrices of the

same dimensions. If ��) = 0 and �)� = 0, then ‖� + �‖∗ = ‖�‖∗ + ‖�‖∗.

Lemma 4.2 (Decomposing '( = '(0 + '(2 ). Let supp (0 = Ω0 and construct a

matrix '(0 that has the entries of '( at indices Ω0

('(0 )8 , 9 =
{
('()8 , 9 if (8 , 9) ∈ Ω0 ,

0 if (8 , 9) ∉ Ω0 ,
(4.115)

and amatrix'(2 = '
(−'(0 that has the entries of'( at the indices of the complement

of Ω0. Then
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1. ‖'(0 ‖0 ≤ ‖(0‖0 = s (by |Ω0 | = B),
2. ‖(0 + '(2 ‖1 = ‖(0‖1 + ‖'(2 ‖1 (by supp('(0 ) ∩ supp('(2 ) = ∅),
3. 〈'(0 , '(2 〉 = 0 (by supp('(0 ) ∩ supp('(2 ) = ∅).

Proof. It can be easily verified that '(0 and '(2 constructed as in (4.1154.115) satisfy
the conditions (1)-(3).

Lemma 4.3 (Upper bound on 〈A(·),A(·)〉). For an operatorA(·) whose RICs
are upper bounded by Δ2 := Δ2A,2B,� and two incoherent low-rank plus sparse

matrices -1 = !1 + (1 ∈ LS<,=(A, B, �), -2 = !2 + (2 ∈ LS<,=(A, B, �) that
have orthogonal components 〈!1 , !2〉 = 0, 〈(1 , (2〉 = 0 and have bounded the

rank-sparsity coefficient �2 := �2A,2B,� < 1, we have that���〈A(-1),A(-2)〉
��� ≤ (

Δ2 +
2�2

1 − �2
2

)
‖-1‖� ‖-2‖� , (4.116)

where �2 = � 2A
√

2B√
<=

is the rank-sparsity correlation coefficient as defined in Lemma2.32.3

on page 1717.

Proof. By A(·) being a linear transform, bilinearity of the inner-product,
and conicity of LS<,=(A, B, �), we can assume without loss of generality that
‖-1‖� = 1 and ‖-2‖� = 1. The parallelogram law applied to ‖A(-1)‖2 and
‖A(-2)‖2 yields

2
(
‖A(-1)‖22 + ‖A(-2)‖22

)
= ‖A(-1) + A(-2)‖22 + ‖A(-1) − A(-2)‖22 .

(4.117)
Subtracting 2 ‖A(-1) − A(-2)‖22 from both sides of (4.1174.117)

4〈A(-1),A(-2)〉 = ‖A(-1) + A(-2)‖22 − ‖A(-1) − A(-2)‖22 . (4.118)

We can expand the equality in (4.1184.118) to bound its right-hand side using the
RICs as

|〈A(-1),A(-2)〉| =
1
4
��‖A(-1 + -2)‖2� − ‖A(-1 − -2)‖2�

�� (4.119)

≤ 1
4

���(1 + Δ2) ‖-1 + -2‖2� − (1 − Δ2) ‖-1 − -2‖2�
��� (4.120)

≤ 1
4

����(1 + Δ2)
(
‖-1‖2� + 2〈-1 , -2〉 + ‖-2‖2�

)
− (1 − Δ2)

(
‖-1‖2� − 2〈-1 , -2〉 + ‖-2‖2�

) ���� (4.121)

=

����Δ2
2

(
‖-1‖2� + ‖-2‖2�

)
+ 〈-1 , -2〉

���� = ���Δ2 + 〈-1 , -2〉
���

(4.122)

where the inequality in the second line in (4.1204.120) comes from the RICs of
A(·) and by -1 + -2 and -1 − -2 being in the set LS<,=(2A, 2B, �) combined
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with Lemma 2.92.9, the equality in the third line in (4.1214.121) is the result of
expanding the inner products, and finally, the last equality in (4.1214.121) comes
from elementary operations and using the fact that ‖-1‖ = 1 and ‖-2‖ = 1.

Moreover, by -1 and -2 being component-wise orthogonal 〈!1 , !2〉 = 0
and 〈(1 , (2〉 = 0, we can upper-bound the magnitude of the correlation
between -1 and -2 as

|〈-1 , -2〉| = |〈!1 , !2〉 + 〈!1 , (2〉 + 〈!2 , (1〉 + 〈(1 , (2〉| (4.123)
= |〈!1 , (2〉 + 〈!2 , (1〉| (4.124)

≤ �2

(
‖!1‖� ‖(2‖� + ‖!2‖� ‖(1‖�

)
(4.125)

≤ 2�2

1 − �2
2
, (4.126)

where in the first equality in (4.1234.123) we expanded the inner-product, the
second equality in (4.1244.124) is the consequence of the components being
orthogonal, the inequality in the third line in (4.1254.125) is the consequence of
Lemma 2.12.1, and the last inequality in (4.1264.126) comes from the upper-bound
of the norms ‖!1‖� , ‖!2‖� , ‖(1‖� , ‖(2‖� from Lemma 2.82.8 and by ‖-1‖� = 1
and ‖-2‖� = 1.

We can now further upper bound (4.1224.122) using the bound in (4.1224.122)
combined with the triangle on the absolute value��� 〈A(-1), A(-2)〉

��� ≤ Δ2 +
2�2

1 − �2
2
, (4.127)

when ‖-1‖� = 1 and ‖-2‖� = 1 which translates into the bound in (4.1164.116)
in the general case����〈A (

-1
‖-1‖�

)
, A

(
-2
‖-2‖�

)〉���� ‖-1‖� ‖-2‖�

≤
(
Δ2 +

2�2

1 − �2
2

)
‖-1‖� ‖-2‖� , (4.128)

by linearity ofA(·) and the inner product.
Note that the bound can be lowered for specific matrices -1 , -2 such that

the matrices of their sums -1 + -2 and -1 − -2 are in LS(A, B, �) sets with
smaller ranks or sparsities.

Remark 4.1 (Bounding the residual of the sparse component). Herein we

derive inequality in (4.424.42) as was done in (4.324.32) to (4.354.35) for the low-rank component

of the error.

Proof. LetΔ := Δ4A,3B,� be anRICwith squarednorms forLS<,=(4A, 3B, �) and
� := �4A,3A,� be the rank-sparsity correlation coefficient defined in Lemma 2.12.1
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on page 1717. Then let '!0 , '
!
1 and '(0 , '

(
1 be defined as above equation (4.184.18)

and (4.224.22) respectively

(1 − Δ)‖'(0 + '
(
1 ‖

2
� ≤ ‖A('

(
0 + '

(
1 )‖

2
2 =

��〈A('(0 + '(1 ), A('(0 + '(1 − ' + ')〉��
(4.129)

=
��〈A('(0 + '(1 ), A('(0 + '(1 − ')〉 + 〈

A('(0 + '
(
1 ), A(')

〉��
(4.130)

≤

������
〈
A

(
'(0 + '

(
1

)
, A ©«−'!0 − '!1 −

∑
9≥2

' 9
ª®¬
〉������

+
��〈A('(0 + '(1 ), A(')〉�� (4.131)

≤
(
Δ + 2�

1 − �2

)
‖'(0 + '

(
1 ‖�

©«‖'!0 + '!1 ‖� +
∑
9≥2
‖' 9 ‖�ª®¬

+
A (

'(0 + '
(
1

)
2
‖A (') ‖2 , (4.132)

where the inequality in the first line comes from '(0 + '
(
1 ∈ LS<,=(0, 2B, 0) ⊂

LS<,=(4A, 3B, �) satisfying the RIC, the second line is the consequence of
feasibility in (4.314.31), the third line comes from Lemma 4.34.3 and by sums of
individual pairs in the inner product being in LS<,=(4A, 3B, �) by Lemma 2.92.9.

The first term in (4.1324.132) can be bounded as(
Δ + 2�

1 − �2

)
‖'(0 + '

(
1 ‖�

©«‖'!0 + '!1 ‖� +
∑
9≥2
‖' 9 ‖�ª®¬

≤
(
Δ + 2�

1 − �2

)
‖'(0 + '

(
1 ‖�

(
‖'!0 + '

!
1 ‖� +

√
2‖'!0 ‖� + ‖'

(
0 ‖�

)
(4.133)

≤
(
Δ + 2�

1 − �2

)
‖'(0 + '

(
1 ‖�

(
(1 +
√

2)‖'!0 + '
!
1 ‖� + ‖'

(
0 + '

(
1 ‖�

)
(4.134)

where the first inequality comes as a consequence of optimality in (4.304.30)
with "A = A and "B = B, and the second inequality comes from

'!0� ≤'!0 + '!1� and
'!1� ≤ '!0 + '!1�. Having bounded the first term in

(4.1324.132) we now move to upper bounding the second term in (4.1324.132) which
comes as a consequence of feasibility bound in (4.314.31) and of the RIC for
'!0 + '

!
1 ∈ LS<,=(4A, 3B, �)A (

'(0 + '
(
1

)
2
‖A (')‖2 ≤ �1(1 + Δ)

'(0 + '(1� . (4.135)

We now bound (4.1324.132) by combining the upper bounds of its constituents
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in (4.1344.134) and (4.1354.135)

(1 − Δ)
'(0 + '(12

�
≤

(
Δ + 2�

1 − �2

) '(0 + '(1� (
(1 +
√

2)
'!0 + '!1�

+
'(0 + '(1� + �1 1 + Δ

Δ

)
,

(4.136)

which after dividing both sides by (1 − Δ)
'(0 + '(1� yields the inequality

in (4.424.42).

Lemma 4.4. Let - 9 , - 9+1 , -0 be any matrices in the set LS<,=(A, B, �) with
� <
√
<=

/ (
3A
√

3B
)
,  9 ≥ 0, andA(·) be an operator whose RICs are sufficiently

upper bounded, then the following two inequalities hold

〈- 9 − -0 , -
9+1 − -0〉 −  9 〈A(- 9 − -0),A(- 9+1 − -0)〉

≤ ‖� −  9 �)&�& ‖2‖-
9 − -0‖�‖- 9+1 − -0‖� , (4.137)

and

‖- 9 − -0 −  9A∗
(
A

(
- 9 − -0

))
‖� ≤ ‖� −  9 �)&�& ‖2‖-

9 − -0‖� , (4.138)

where the spectrum of the matrix

(
� −  9 �)&�&

)
∈ R<=×<= is bounded as

1 −  9
(
1 + Δ3A,3B,�

)
≤ �

(
� − �)&�&

)
≤ 1 +  9

(
1 − Δ3A,3B,�

)
, (4.139)

which gives an upper bound on the norm ‖�− 9 �)&�& ‖2 ≤
��1 −  9 (1 + Δ3A,3B,�

) ��
as the lower bound in (4.1394.139) is larger then the upper bound.

Proof. We vectorize the matrices on the left hand side of (4.1374.137) using a
mapping vec(·) : R<×= → R<= that stacks columns of a given matrix into a
vector and a mapping mat(·) from the space of linear operatorsA : R<×= →
R? to the space of matrices of size ? × <=

G0 = vec (-0) , G 9 = vec
(
- 9

)
, G 9+1 = vec

(
- 9+1

)
∈ R<=

� = mat (A) =


vec (�1))
...

vec
(
�?

))
 ∈ R

?×<= .
(4.140)

Let -0 = *0Σ0+0 + (0 , - 9 = * 9Σ9+ 9 + ( 9 , - 9+1 = * 9+1Σ9+1+ 9+1 + ( 9+1 be
the singular value decompositions where the matrices of the left singular
vectors are* 9 ∈ R<×A and their sparse components are supported at indices
Ω9 = supp

(
( 9

)
. Consider the union of the index sets Ω :=

{
Ω0 ,Ω9 ,Ω9+1}

and construct the following frame

& = [�= ⊗* �] =


* 0=,3A . . . 0=,3A

0=,3A * . . . 0=,3A
...

. . . 4Ω1 . . . 4Ω3B

0=,3A . . . . . . *


∈ R<=×3(=A+B) ,

(4.141)
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where* ∈ R<×3A is formed by concatenating*0 , * 9 , * 9+1 and 4Ω8
is a vector

corresponding to a vectorized matrix with a single entry 1 at the index Ω8 .
Note that %& = &

(
&)&

)−1
&) is an orthogonal projectionmatrix on the low-

rank plus sparse subspace defined by thematrix* and the index setΩ. Note
that by & being formed by the low-rank plus sparse bases of -0 , -

9 , - 9+1

we have that the projection does not change the vectorized matrices

%&G0 = G0 , %&G
9 = G 9 , %&G

9+1 = G 9+1. (4.142)

To establish the bound in (4.1374.137) we write the left hand side in its vectorized
form (

G 9 − G0

)) (
G 9+1 − G0

)
−  9

(
�(G 9 − G0)

)) (
�(G 9+1 − G0)

)
, (4.143)

and replacing � with �& = �%& in (4.1434.143) using the identities in (4.1424.142)
simplifies the term as(

G 9 − G0

)
)
(
G 9+1 − G0

)
−  9

(
�&(G 9 − G0)

)) (
�&(G 9+1 − G0)

)
(4.144)

=

(
G 9 − G0

)) (
(G 9+1 − G0) −  9 �∗&�&(G

9+1 − G0)
)

(4.145)

=

(
G 9 − G0

)) (
(� −  9 �∗&�&)(G

9+1 − G0)
)

(4.146)

≤ ‖� −  9 �∗&�& ‖2 ‖G
9 − G0‖2 ‖G 9+1 − G0‖2 (4.147)

= ‖� −  9 �∗&�& ‖2 ‖-
9 − -0‖� ‖- 9+1 − -0‖� , (4.148)

where ‖� −  9 �∗&�& ‖2 is the ℓ2 operator norm of an <= × <= matrix.
Similarly we now establish the bound in (4.1384.138)- 9 − -0 −  9A∗

(
A

(
- 9 − -0

))
�
=

G 9 − G0 +  9 �)�
(
G0 − G 9

)
2
(4.149)

=

(� −  9 �)�) (
G 9 − G0

)
2

(4.150)

≤
� −  9 �∗&�&

2

- 9 − -0

�
, (4.151)

where we just vectorized the matrices and the linear operator A(·) and
upper bounded the expression using ℓ2-operator norm ‖� −  9 �∗&�& ‖2.
Matrix �& acts on a subspace of LS<,=(3A, 3B, �) and is self-adjoint, as such
its eigenvalues can be bounded using the RICs as done by Tanner and WeiTanner and Wei
(20132013) and by Blanchard et al.Blanchard et al. (20152015)

1 −  9
(
1 + Δ3A,3B,2�

)
≤ �

(
� − �∗&�&

)
≤ 1 +  9

(
1 − Δ3A,3B,2�

)
. (4.152)
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5low-rank models for
multispectral imaging

synopsis

In this chapter, we apply low-rank matrix completion and com-
pressed sensing in the context of the reconstruction of multispec-
tral imagery. Snapshot mosaic multispectral imagery acquires
an undersampled data cube by acquiring a single spectral mea-
surement per spatial pixel. Sensors which acquire p frequencies,
therefore, suffer from severe 1/? undersampling of the full data
cube. We show that the missing entries can be accurately im-
puted using non-convex techniques from sparse approximation
and matrix completion initialised with traditional demosaicing
algorithms. In particular, we observe the peak signal-to-noise
ratio can typically be improved by 2 dB to 5 dB over current state-
of-the-art methods when simulating a ? = 16 mosaic sensor
measuring both high and low altitude urban and rural scenes as
well as ground-based scenes.

5.1 introduction

Multispectral imaging is the process of recording 2D arrays of information
at multiple spectra – light frequencies. Having access to such a rich, three-
dimensional data cube allows different materials to be distinguished due to
their differing spectral emission profiles. As a result,multispectral imaging is
used in applications ranging from landmine detection, precision agriculture,
and medical diagnosis to name but a few of its application domains; for a
partial survey see the January 2014 special issue of IEEE Signal Processing
Magazine (Ma et al.Ma et al., 20142014). The increased sensor size and acquisition time
are some of the central obstacles to themorewidespread use ofmultispectral
imagery.

Snapshot mosaic multispectral sensors allow for a compact video-rate
multispectral imaging by acquiring only a fraction of the multispectral cube.
For example, the IMEC SNm4x4 records 16 bands at a rate of 340 frames
per second on a spatial two-dimensional 2048 × 1088 pixel domain by only
acquiring a single spectrum per pixel; specifically this is achieved by tiling
the two-dimensional domain by 4 × 4 pixel supercells where each supercell
acquires the spectra independently. This chapter illustrates the architecture
through the IMEC sensor, but note there are numerous similar sensors such
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as the S137 system by CUBERT. The undersampled snapshot data cube can
either then be viewed directly as 16 separate 512 × 272 pixel arrays, or more
typically the missing multispectral data cube values can be interpolated to
give approximate images on the full 2048 × 1088 pixel spatial domain.

Herein we demonstrate the efficacy of multiple methods for interpo-
lating the missing values in the above snapshot mosaic data cube by sim-
ulating the undersampling from complete three-dimensional data cubes
provided by DSTL as well as AVIRIS (Vane et al.Vane et al., 19931993), Stanford SCIEN
(Skauli and FarrellSkauli and Farrell, 20132013), Nascimento (Nascimento et al.Nascimento et al., 20022002), Foster
(Foster et al.Foster et al., 20042004), IEEE GRSS Data Fusion Contest (Le Saux et al.Le Saux et al., 20182018).

The rest of the chapter is organised as follows. In addition to reviewing
the existing state-of-the-art interpolation methods in §5.25.2, we demonstrate
sparse approximation andmatrix completionmethods in §5.35.3 and 5.45.4 respec-
tively,whichweobserve to substantially outperform theprior state-of-the-art.
Over the above diverse data sets, we observe that non-convex compressed
sensing and matrix completion methods initialised with traditional interpo-
lations methods typically improve the peak signal-to-noise ratio by 2 dB to
5 dB, see Table 5.15.1.

Demosaicing is theprocess bywhich theundersampled three-dimensional
multispectral data cube has the missing entries approximated so as to sim-
ulate a full data acquisition. While most three-dimensional interpolations
methods would be directly applicable, we consider a few methods previ-
ously used by the multispectral community, such as direct interpolation as
described in §5.25.2 as well as sparse approximation regularisation methods in
§5.35.3 and low-rank structure as presented in §5.45.4.

5.2 direct interpolation methods

Brauers and AachBrauers and Aach (20062006) developed methods to estimate the missing values
in the multispectral cube based on extending a spatial bilinear interpolation
of the measured values to include any spectral correlation. The weighted
bilinear interpolation (WB) for the 4×4 pixel regular mosaic filter follows by
padding the missing entries with zeros and convolving with the cartesian
product of a discrete seven-pixel width filter 1

4 [1 2 3 4 3 2 1]. Then, the
spectral correlation is included in the spectral difference (SD) method by a)
taking the output of WB to independently compute, for each band, say :,
the difference between the values of the measured pixels for spectrum : and
the WB interpolated values of every other band restricted to the support of
the measured pixels of spectrum :, then b) applying WB to these spectral
differences c) to form an approximation of the full spectrum : by adding
the output of step (b) to the difference with ; at the location of the measured
pixels for spectrum ;.

Mihoubi et al.Mihoubi et al. (20152015) extended the SD approach to consider alternative
ways to build correlations between the bands. In intensity difference (ID)
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they build spectral correlation by first constructing a spatial intensity map
whose value at a pixel is the measurement for whichever spectra was mea-
sured at that spatial location, then this intensity map is averaged using a
weighting based on the number of pixels per spectra contained in the av-
eraging width. See §5.5.25.5.2 for details on the choice of averaging used here
and Mihoubi et al.Mihoubi et al. (20152015) for a more general discussion. Hence, the differ-
ence between this averaged intensity map and the measurements for each
spectrum is computed, the unknown values zero-padded, and each band
averaged such as in WB.

Interpolation methods designed in transform domains have been con-
sidered by Miao et al.Miao et al. (20062006) in the binary tree-based edge-sensing (BTES)
method, which has the additional benefit of allowing for variable sampling
densities per frequency band. However,we observe it is inferior to SD and ID
described above in the setting of snapshot imaging. Pseudo-panchromatic
image difference (PPID) (Mihoubi et al.Mihoubi et al., 20172017) builds upon BTES and ID.
However, due to the applicability of PPID to only some specific mosaic
arrangements we leave comparison with our algorithms for a later time.

5.3 sparse approximation inpainting

Sparse approximation inpainting allows one to easily consider the interpola-
tion of the under-complete snapshot data cube in transforms more general
than the linear interpolation of (WB). In particular, one can assume that
the image is well approximated by a sparse representation in a suitable im-
age domain and exploit this structure to reconstruct it from undersampled
measurements (King et al.King et al., 20132013; Dong et al.Dong et al., 20122012; Elad et al.Elad et al., 20052005), e.g. by
solving

min
G

H − %ΩΨ−1G


2 , s.t. ‖G‖0 ≤ : , (5.1)

whereΨ represents the transform inwhich the data is known to be compress-
ible and H is the full data cube projected by%Ω to the undersampled locations.
Degraux et al.Degraux et al. (20152015) apply this model to a reconstruction of multispectral
imagery acquired by mosaic snapshot cameras.

The primary challenge lies in two aspects: (i) the significant subsampling
ratio of 1/ , where  is the number of spectral bands, and (ii) the selection of
the suitable transformΨ. The first problem can be overcome by initialising
the state-of-the-art sparse approximation algorithms for solving (5.15.1) with
sufficiently accurate initial estimates, such as those from the classical inter-
polation methods described in §5.25.2. As it was pointed out in (Degraux et al.Degraux et al.,
20152015), we find that, for natural scenes captured by snapshot multispectral
imaging, a Kronecker product of 2D wavelet transform spatially and the
discrete cosine transform for the spectral dimension is an effective choice
for the representation Ψ. In particular, the 2D wavelet transform spatially
includes elements of nearly global support to allow broad correlations as
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well as local elements to express fine detail and the discrete cosine transform
models the slowly varying values in the spectral dimension.

5.4 low-rank matrix completion inpainting

Rather than using local correlations, matrix (and tensor) completion exploit
the correlation in the data cube through a low-rank structure, e.g. by solving

min
-
‖H − %Ω-‖2 , s.t. rank(-) ≤ A, (5.2)

where H is the observed data, - is a matrix corresponding to an unfolding
of the complete three-dimensional data cube, and %Ω is a restriction to the
measured values as before.

Although the low-rankmatrix completion problem is NP-hard in general
(see a recent survey by Davenport and RombergDavenport and Romberg (20162016)) there is a number
of computationally fast solvers for the problem with provable convergence
guarantees (Wen et al.Wen et al., 20122012; Tanner and WeiTanner and Wei, 20132013; Blanchard et al.Blanchard et al., 20152015).
In fact, matrix completion has been previously applied to the reconstruction
of subsampled multispectral imagery (Gelvez et al.Gelvez et al., 20152015) by the Coded
Aperture Snapshot Spectral Imager (CASSI) (Gehm et al.Gehm et al., 20072007). Here we
show that matrix completion can be used also in the case of a more severe
subsampling by snapshot mosaic camera designs if provided with suitable
initialisation.

While there are many non-convex methods for matrix completion, we
showcase two exemplary cases but expect that other non-convex methods
would perform similarly well. We apply conjugate gradient iterative hard
thresholding (CGIHT) (Blanchard et al.Blanchard et al., 20152015) and alternating steepest de-
scent (ASD) (Tanner and WeiTanner and Wei, 20162016) to solve (5.25.2), providing them with an
initial guess from either SD or ID. We show that both CGIHT and ASD can
improve on the classical interpolation methods. This differs substantially
from prior work both in terms of using more recent algorithms for matrix
completion which have been shown to be more effective and initialising
them with prior state-of-the-art interpolation methods, and moreover in
that unlike (Gelvez et al.Gelvez et al., 20152015) which treat each spectral band separately
with 30% undersampling, we vectorise the spatial dimensions to create a
matrix of size 262, 144 by 16 with 1/16 undersampling. We observe that this
unfolding which allows full correlation between the spectral information is
particularly effective, often resulting in reconstructions which are visually
indistinguishable from fully acquired data.

5.5 numerical simulations

In this section, we show and explain the numerical results obtained by
applying the methods discussed above.
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5.5.1 Data sets

We consider the efficacy of the algorithms for demosaicing on the following
data sets:
− High altitude airborne images from theAVIRIS (Vane et al.Vane et al., 19931993) and 2018

IEEE GRSS Data Fusion contest (Le Saux et al.Le Saux et al., 20182018). AVIRIS line-scan
captures 224 spectral bands in the 380 nm to 2500 nm and the GRSS
images have 48 spectral bands in the range of 380 nm to 1050 nm.

− Low altitude airborne images acquired at DSTL Porton Down, in August
2014, from which we selected 10 representative radiance images of
fields from a HySpex VNIR-1600 line-scan camera in the range 400 nm
to 1000 nm.

− Ground-based images from the Stanford SCIEN (Skauli and FarrellSkauli and Farrell, 20132013),
Nascimento (Nascimento et al.Nascimento et al., 20022002) and Foster (Foster et al.Foster et al., 20042004).
TheStanfordSCIEN images come from the line-scanHySpexVNIR-1600
camera.

We processed these data sets to simulate the spectrum measures by the
IMEC SNm4x4 snapshot sensor with access to the complete data cube. Then,
we undersampled the data cube following the sensor sampling pattern and
the following simulations conducted.

5.5.2 Simulation setup

We implement and test recovery by two interpolation methods ID and SD,
twomatrix completionmethods ASD andCGIHT and a compressed sensing
version of CGIHTwith a sparsifying transform as a Kronecker product of 2D
Daubechies wavelets (W2) in the spatial and 1D Discrete Cosine Transform
(DCT) in the spectral domain which we reference as W2×DCT.

The iterative algorithms are terminated once the error in iteration C is%Ω-(C) − H2 /‖H‖2 ≤ 10−7 or at the 500Cℎ iteration.
We report the quality of an image approximated by demosaicing by the

peak signal-to-noise ratio (PSNR), defined as the log of the ratio between
the maximum possible power of (the slide of) an image and the power of
corrupting noise that affects the fidelity of its representation, computed
in terms of the average squared difference (or mean squared error, MSE)
between the reference image and its reconstruction:

PSNR: = 10 log10

(
(max?∈P � :? )2

1
|P|

∑
?∈P(� :? − �̂ :? )2

)
, (5.3)

where � : and �̂ : are the :-th band slices of the reference cube and the
reconstruction, respectively, and P denotes the set of all pixels.

We also employ the structural similarity (SSIM) index (Wang et al.Wang et al., 20042004),
which is a decimal value between −1 and 1, with 1 being reachable only in
the case of two identical sets of data. SSIM is a perception-based model that
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(a) PSNR throughout spectral bands.

(b) W2×DCT [33.2 dB]. (c) CGIHT [35.3 dB].

Figure 5.1: Results for recon-
struction of N06. W2×DCT
(CS) and CGIHT (MC) ini-
tialised from SD. The sparsity
ratio is set to � = 0.14 for
W2×DCT (CS) and the rank
is set to A = 3 for ASD and
CGIHT (MC). Wavelet based
CSmethod smooths out the im-
age while CGIHTMC is able to
better preserve sharp edges.

considers image degradation as a perceived change in structural information,
while also incorporating important perceptual phenomena, including both
luminance masking and contrast masking terms.

5.5.3 Results

Figure 5.1a5.1a shows the PSNR of each spectrum given its band centre, for a
sample image from Nascimento et al.Nascimento et al. (20022002), for the classical interpolation
methods SD and ID as well as the compressed sensing (CS) andmatrix com-
pletion (MC) techniques initialised with SD. For CS andMC reconstructions,
we observe that the sparsity ratio around 0.14, respectively the rank of 3, con-
sistently achieves the best recovery performance in terms of PSNR. Notice
that, except for the first band, the matrix completion algorithms outperform
SD and ID. On the other hand, the compressed sensing approach does not
improve on the interpolation methods. In particular, note the overall incor-
rect contrast level resulting in yellowing of Figure 5.1b5.1b. Moreover, we lose
the sharpness of the edges in the balcony when employing CS W2×DCT
(Figure 5.1b5.1b), while we recover it with the matrix completion variant of
CGIHT (Figure 5.1c5.1c).

To further emphasise how the different algorithms differ from each other
we show the reconstructions PSNR from the corresponding reference images
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(a) D2301, ID [37.9 dB PSNR and SSIM of 0.99992].

(b) F06, W2×DCT from SD [39.3 dB PSNR and SSIM of 0.99955].

(c) GD, CGIHT from SD [36.2 dB PSNR and SSIM of 0.99988].

Figure 5.2: Left: Colour render-
ings of image reconstructions.
Right: MSE of reconstructions
(log-scale).

in Figure 5.25.2. Note in Figure 5.2c5.2c how ID accurately reconstructs the field
image, taking into account the spectral correlation between the bands, but
smooths the sharp details. The compressed sensing approach does a better
job in identifying the edges (Figure 5.2b5.2b), but suffers from the same problem
overall. On the other hand, the matrix completion CGIHT outperforms the
other methods due to the presence of field-like uniformities.

Finally, as shown in Table 5.15.1, in themajority of cases the best-performing
algorithms are the matrix completion CGIHT and ASD initialised with SD,
with improvements over both SD and ID from 2 dB to 5 dB. StCh from
Stanford SCIEN (Skauli and FarrellSkauli and Farrell, 20132013) seems to be the only outlier, with
an improvement of just 0.2 dB.

Being directly related to the number of bands, the rank of the spectral
unfolding seems to be effective in capturing the spectral information of
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IMAGE INIT ASD CGIHT W2×DCT
D0201 ID 34.5 ± 0.8 36.3 ± 1.1 37.9 ± 1.1 34.3 ± 0.5

SD 35.9 ± 0.7 38.1 ± 0.9 39.5 ± 1.2 35.8 ± 0.6
D0301 ID 36.0 ± 1.8 38.3 ± 2.2 39.2 ± 1.7 35.1 ± 1.1

SD 37.3 ± 1.3 39.7 ± 1.4 40.5 ± 1.5 36.3 ± 1.0
D0303 ID 39.1 ± 1.0 41.2 ± 1.2 43.1 ± 1.4 38.8 ± 0.7

SD 40.8 ± 0.8 43.4 ± 1.1 45.5 ± 1.3 40.5 ± 0.7
D0307 ID 34.1 ± 1.8 36.1 ± 2.3 36.9 ± 2.0 33.2 ± 1.1

SD 35.2 ± 1.1 37.2 ± 1.2 37.8 ± 1.5 34.3 ± 0.8
D0308 ID 37.9 ± 0.5 39.7 ± 0.9 41.5 ± 1.1 37.7 ± 0.4

SD 39.5 ± 0.5 41.7 ± 1.1 43.2 ± 1.2 39.5 ± 0.5
D2301 ID 37.9 ± 0.3 39.4 ± 0.7 41.1 ± 1.3 37.8 ± 0.3

SD 39.5 ± 0.3 41.5 ± 1.0 43.6 ± 1.5 39.7 ± 0.4
AvLF ID 33.7 ± 0.7 35.6 ± 1.2 36.7 ± 2.3 33.5 ± 0.7

SD 35.3 ± 0.7 37.8 ± 1.6 39.3 ± 2.6 34.7 ± 0.6
StCh ID 36.2 ± 1.0 36.7 ± 1.7 36.6 ± 1.8 36.0 ± 1.0

SD 37.3 ± 1.1 37.5 ± 1.0 37.2 ± 0.9 37.4 ± 1.0
N04 ID 37.3 ± 3.1 38.6 ± 2.6 38.2 ± 2.8 35.3 ± 1.9

SD 35.6 ± 0.8 36.9 ± 0.8 35.4 ± 2.2 34.9 ± 0.9
N06 ID 33.3 ± 0.8 34.5 ± 0.6 35.2 ± 0.5 32.6 ± 0.4

SD 33.5 ± 0.3 34.8 ± 0.4 35.3 ± 0.8 33.2 ± 0.2
N08 ID 33.5 ± 0.4 34.4 ± 0.6 35.6 ± 1.0 32.7 ± 0.2

SD 33.2 ± 0.4 34.4 ± 0.7 35.5 ± 1.3 32.9 ± 0.3
F05 ID 36.1 ± 2.4 36.6 ± 1.9 36.5 ± 1.9 34.0 ± 1.4

SD 35.0 ± 0.4 36.1 ± 0.8 35.7 ± 1.6 34.1 ± 0.7
F06 ID 40.0 ± 0.9 40.2 ± 0.8 39.9 ± 0.9 38.6 ± 0.7

SD 38.9 ± 0.4 39.6 ± 0.9 39.3 ± 0.9 39.1 ± 0.5
F07 ID 34.9 ± 1.2 36.3 ± 1.5 36.1 ± 1.6 34.4 ± 0.9

SD 34.6 ± 0.8 36.3 ± 1.2 35.1 ± 1.8 34.6 ± 0.8
GB ID 34.3 ± 1.1 36.0 ± 0.9 36.7 ± 1.1 33.3 ± 0.5

SD 34.9 ± 0.3 37.2 ± 0.9 37.5 ± 1.5 34.7 ± 0.7
GD ID 34.1 ± 1.4 35.8 ± 1.1 36.2 ± 1.2 33.0 ± 0.5

SD 34.6 ± 0.4 36.9 ± 0.9 36.6 ± 1.1 34.3 ± 0.7
GP ID 37.9 ± 1.2 39.7 ± 0.9 40.4 ± 1.8 36.9 ± 0.5

SD 38.6 ± 0.4 40.9 ± 0.9 41.5 ± 1.2 38.4 ± 0.7
GR ID 35.3 ± 1.2 37.0 ± 1.0 37.3 ± 1.2 34.4 ± 0.5

SD 36.0 ± 0.4 38.0 ± 0.9 38.1 ± 1.7 35.7 ± 0.6

Table 5.1: Average PSNR over
the 16 bands, with standard de-
viations. The best results for
each image are highlighted in
bold.

the analysed datasets. Our results suggest a high correlation between the
frequency bands and a low-rank structure of the spectral unfolding of our
images, in which most of the information is contained in the first 3 singular
values of the spectral unfolding.

Related to the choice of rank is the problem of unmixing of spectral
end-members using non-negative matrix factorization (NMF). Here the task
is to approximate the matrix that comes from the spectral unfolding of
a multispectral image, as a product of two rank-A matrices that are also
non-negative. The NMF solution can be interpreted as the set of A end-
members in the left matrix and the set of A abundance factors in the right
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matrix (Parente and PlazaParente and Plaza, 20102010). However, in the case of low-rank matrix
completion, we do not impose the non-negative constraint, and therefore
our solution does not have the same interpretative power.

5.6 summary and discussion

We provide a numerical comparison of multispectral demosaicing by tradi-
tional interpolation, sparse approximation and matrix completion methods.
Our experiments demonstrate that non-convex matrix completion typically
improves reconstruction by 2 dB to 5 dB over the current state-of-the-art
methods. This differs substantially from prior work in terms of employing
matrix completion on the spectral unfolding of the image in the context of
demosaicing, initialising it with classical interpolation methods and using
more recent non-convex matrix completion algorithms.
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6summary & final remarks

This thesis develops theory and algorithms for the recovery of low-rank
plus sparse matrices from subsampled measurements. In particular, we
studied: (i) the well-posedness of optimisation problems over the sets of
low-rank plus sparse matrices, (ii) random linear maps whose restricted
isometry constants are bounded when acting on the set of low-rank plus
sparse matrices, and (iii) algorithms that provably recover low-rank plus
sparse matrices from subsampled measurements.

6.1 summary of main results

Our central findings are summarised in the following key areas.

6.1.1 Low-rank plus sparse matrix sets are not closed

We studied the low-rank plus sparse matrix set LS<,=(A, B) and the well- Chapter 22: Matrix rigidity
and the ill-posedness in ma-
trix recovery

posedness of optimisation problems defined over it. We found a curious
result in Theorem 2.12.1 on page 2020, which states the set LS=,=(A, B) is not closed
for a range of ranks A and sparsities B satisfying

= ≥ (A + 1)(B + 2) or = ≥ (A + 2)(3/2)B1/2. (6.1)

As a consequence, the corresponding non-convex optimisation problems for
low-rank matrix completion and Robust PCA can fail to have any solution.
This result might come as a surprise, as in both cases, it has been assumed
until now that a solution must exist, and the existing theory have instead
focused on guarantees for the uniqueness of the solution. Moreover, we
give specific constructions of simple matrices for which we numerically
observe the ill-posedness difficulties when applied to state-of-the-art matrix
completion and Robust PCA algorithms.

We close the set by restraining the Frobenius norm of the low-rank
component, which results into the set of bounded low-rank plus sparse
matrices LS�<,=(A, B) in Definition 1.21.2 that is closed by Lemma 2.82.8. However,
the problem with LS�<,=(A, B) is that it is not possible to guarantee that the
sum of two matrices belonging to the set is also a bounded low-rank plus
sparse matrix.

The issue with the lack of additivity is overcome in Definition 1.31.3 of the
set of incoherent low-rank plus sparse matrices LS<,=(A, B, �), andwhich has
the property that the sum two matrices in the set retains the incoherence, in
other words: LS<,=(2A, 2B, �) = LS<,=(A, B, �) + LS<,=(A, B, �) by Lemma 2.92.9.
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Additionally, for � <
√
<=

/ (
A
√
B
)
the set of incoherent low-rank plus sparse

matrices is also a subset of LS�<,=(A, B) as shown in Lemma 2.102.10.

6.1.2 RICs for Gaussian measurements and low-rank plus sparse matrices

We developed the theory showing that random linear maps obeying concen- Chapter 33: Restricted isom-
etry constants for low-rank
plus sparse matrix sets

tration of measure inequalities act as approximate isometries when applied
to the set of low-rank plus sparse matrices LS<,=(A, B, �). Theorem 3.13.1 proves
that the restricted isometry constants (RICs) of random linearmaps captured
in Definition 3.23.2 in respect to the set LS<,=(A, B, �) are bounded for

? = O(A(< + = − A) + B) log

((
1 − �2 A

2B

<=

)−1/2
<=

B

)
, (6.2)

provided� <
√
<=

A
√
B
. This translates into the RICs being bounded independent

of the problem size when ?/<=, B/?, A(< + < − A)/? and � remain fixed.

6.1.3 Methods for provable recovery of low-rank plus sparse matrices

We devised several computationally tractable methods for the recovery of Chapter 44: Algorithms for low-

rank plus sparse matrix sensinglow-rank plus sparse matrices from subsampled measurements.
Firstly, in Theorem 4.14.1,we proved that an upper bound on the RICs of the

measurement operator implies uniqueness of the solution to the recovery
problem.

By treating the low-rank and the sparse component individually,wewere
able to prove in Theorem 4.24.2 that semidefinite programming that solves the
convex optimisation problem in (1.191.19) robustly recovers the subsampled
matrix provided the RICs of the measurement operator are sufficiently
small.

Moreover, we proposed two gradient descent algorithms, NIHT in Algo-
rithm 11 and NAHT in Algorithm 22, for solving the non-convex optimisation
in (1.181.18).WhileNIHTperforms an oblique projection on the setLS<,=(A, B, �),
NAHT alternates between minimising the objective in the low-rank and in
the sparse component. By proving Theorem 4.34.3 and Theorem 4.44.4, we show
that both of these methods are guaranteed to converge to the subsampled
matrix when the RICs of themeasurement operator are sufficiently bounded.

The convex relaxation and NAHT also apply to Robust PCA, when the
sensing operator is chosen to be the identity A = Id, which is an isometry
with Δ = 0, and achieve global linear convergence in the presence of the
number of corruptions of the optimal order B = O

(
1/

(
�2A2) ) .

We performed numerical experiments illustrating these results. In §4.54.5,
we observed a phase transition in the parameter space for synthetically
generated problems. In §4.64.6,we gave an exemplary applications on dynamic-
foreground/static-background separation and multispectral imaging.
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6.1.4 Applications to multispectral imaging

We implemented a number of matrix completion and compressed sensing Chapter 55: Low-rank models
for multispectral imagingalgorithms in the context of the reconstruction ofmultispectral imagery from

snapshot mosaic filters. We are able to accurately recover the missing entries
despite the severe 1/16mosaic undersamplingwith the typical improvement
in the peak signal-to-noise ratio by 2 dB to 5 dB across high and low altitude
urban and rural scenes as well as ground-based scenes.

6.2 open problems and future work

This thesis laid down the ground work for low-rank plus sparse matrix
sensing opening up the pursuit of several research areas in the future.

6.2.1 Expansion of the LS=,=(A, B) non-closedness results

The result of Theorem 2.12.1, stating the set LS=,=(A, B) is not closed, can be
extended in two ways.

Firstly, it is reasonable to assume that all LS=,=(A, B) sets that do not
simplify to the simple cases of: (i) the sets of sparse matrices LS=,=(0, B),
(ii) the sets of low-rank matrices LS=,=(A, 0), or (iii) the set of all matrices
R=×= = LS=,=(A, (= − A)2), are not closed. This proposition is formally stated
in Conjecture 11 and left for future work.

Secondly, the significance of the analogous results of (de Silva and Limde Silva and Lim,
20082008) for the CP-rank of higher-order tensors, lies also in the fact that the set
of the tensors, for which the non-closedness occurs, is of a positive measure.
It would be curious to see if this is also the case for low-rank plus sparse
matrices, i.e. that the set of matrices for which the non-closedness is an issue
has a positive measure.

6.2.2 Expansion to the sensing of other additive structures

The proof technique used in Theorem 3.13.1 of the RICs for the combined
additive structure of low-rank plus sparse matrix sets could be extended to
additive structures of other sets. The only requirement is that the covering
number of the �-net of these sets is sufficiently upper bounded. To this end,
it might be necessary to pose an additional constraint on the energy of one
of the components, as done in Definition 1.11.1.

6.2.3 Expansion of algorithms for low-rank plus sparse matrix sensing

The algorithmic contributions presented in this work open up the possibility
of other algorithms, developed in compressed sensing and low-rank matrix
completion/sensing, to be extended to the case of low-rank plus sparse
matrix recovery.
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In particular, algorithms involving momentum (Kyrillidis and CevherKyrillidis and Cevher,
20142014; CevherCevher, 20112011), minimisation over increasingly larger subspaces
(Blanchard et al.Blanchard et al., 20152015), or that express the low-rank component in a fac-
torised form (Wen et al.Wen et al., 20122012; Haldar and HernandoHaldar and Hernando, 20092009; Tanner and WeiTanner and Wei,
20162016).
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